## CGN in real form

Dr.Shin Miakawa

NTT Communications 2014 Feb. for APRICOT



#### Today's talk

- Some knowledge about CGN we recently got
  - About recent CGN machines
  - Internet applications through CGN implemented network
- How IPv6 deployment helps situations
  - From our experiences of dual stack deployment
- In this presentation, I'd like to use the term "CGN" as "IPv4 address sharing mechanism among different ISP subscribers" as its definition.
  - So, NAT444, DS-Lite, what ever... are CGN in this presentation
  - However so, I'd like to talk about mostly CGN as NAT444 device

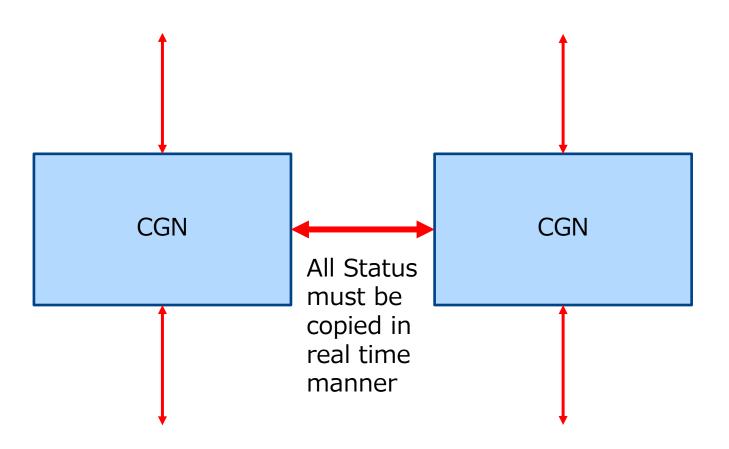


#### Who I am

- Director, Network and Security technologies, Innovative IP
  Architecture Center, NTT Communications
- One of authors of RFC6888 (Common Requirements for Carrier-Grade NATs (CGNs))
- Also I am quite IPv6 person
  - RFC3769 Requirements for IPv6 Prefix Delegation
  - RFC4241 A Model of IPv6/IPv4 Dual Stack Internet Access Service
- Please check out <u>http://www.nttv6.jp/~miyakawa/</u>



### Recent CGN implementations



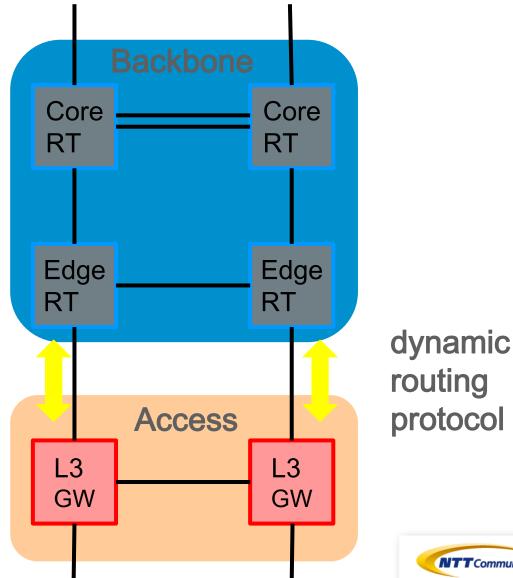

#### Recent CGN implementations

- 10M-100M concurrent sessions at the maximum
- 10k-50k new connections per second can be processed
- High Availability support
- 1U 4U form appliance
- 1G-40G bps Ethernet interface
- Usually, specification on catalogue is way better than actual performance
  - Double or triple, sometime
  - Like 0-400m (or 1/4 mile) speed performance of a car



#### HA of CGN (Active–Stand-by or Act-Act)






#### Actual CGN implementations check sheet

| Sample                              | A                     | В               | С                            |  |  |
|-------------------------------------|-----------------------|-----------------|------------------------------|--|--|
| Max Concurrent<br>Session (catalog) | 67M                   | 60M             | 36M                          |  |  |
| Max Concurrent<br>Session (actual)  | 16M                   | 23M             | 25M                          |  |  |
| Chassis                             | 1U                    | 8U              | 2U                           |  |  |
| DNS ALG                             | Supported             | Supported       | Supported                    |  |  |
| Impact of<br>Fullcone NAT           | nori is il licond and | •               | No special<br>treatment      |  |  |
| Log                                 | Adequate              | Too much        | Insufficient                 |  |  |
| Log server                          |                       | , ,             | Can be multiple but some bug |  |  |
| High Availability                   | Supported             | Not checked yet | Bug                          |  |  |
|                                     |                       |                 |                              |  |  |

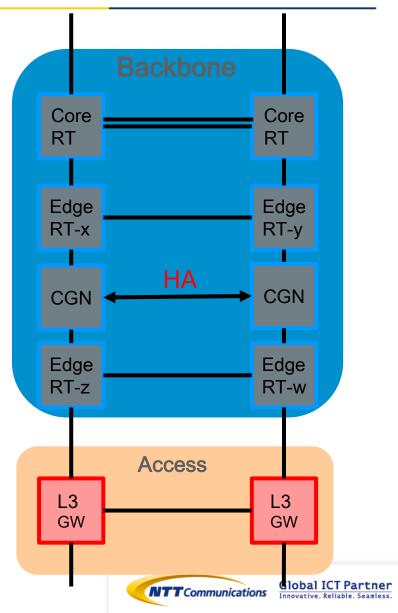


#### Sample network design (before CGN)



routing protocol






#### Example of CGN introduction

- Usually, CGN can not speak BGP so that it is impossible to place CGNs at
  - eBGP border
  - ➢ iBGP border

#### Sample Design Policy

- Divide edge router to two routers and place CGNs in between to use dynamic routing protocol
- Activate HA between CGNs to ensure the service



- IPv6 should (or must) be introduced when CGN needed to be there, because...
  - CGN is quite expensive device
    - $\checkmark$  And no hope to recover the cost...
  - IPv6 introduction saves many TCP sessions today !
- So, CGN machines must support IPv6 forwarding



# Internet Application with CGN



#### How many TCP or UDP sessions in applications ?

It is very important to observe how many TCPs and UDPs are used in applications to identify the best parameters of CGN configuration. We have observed following applications last year (2013).

| Application Type                    | Application (or web site)                           |  |  |  |  |  |
|-------------------------------------|-----------------------------------------------------|--|--|--|--|--|
| Web mail                            | Gmail, Yahoo! mail, Hotmail                         |  |  |  |  |  |
| Video Stream                        | Ustream, YouTube, Nico Nico Douga, Hulu, Dailymotic |  |  |  |  |  |
|                                     | Daum, QQ                                            |  |  |  |  |  |
| Video Stream (with adult containts) | fc2, dmm.co.jp, xvideos                             |  |  |  |  |  |
| Portal Site                         | Yahoo.co.jp                                         |  |  |  |  |  |
| EC Site                             | Rakuten, amazon.com, apple.com                      |  |  |  |  |  |
| Search Engine                       | google                                              |  |  |  |  |  |
| Online PC game                      | Aeria Games , Ameba pig, Nexon, 777town, Hangame    |  |  |  |  |  |
| On line banking                     | Muzuho Bank , DC CARD                               |  |  |  |  |  |
| SNS(Twitter)                        | Twitter                                             |  |  |  |  |  |
| SNS (Facebook)                      | Facebook                                            |  |  |  |  |  |
| Media                               | iTunes                                              |  |  |  |  |  |
| Cloud service                       | Drop Box, Evernote                                  |  |  |  |  |  |
| IM (Intastant Messenger)            | Skype messenger                                     |  |  |  |  |  |
| VoIP                                | Skype voip                                          |  |  |  |  |  |
| ftp                                 | FFFTP                                               |  |  |  |  |  |
| ssh                                 | putty                                               |  |  |  |  |  |

Copyright © 2013 NTT Communications Corporation. All right reserved.

#### results

We show the average of the number of the sessions used by application types

|                | Web<br>mail | Video | Video<br>(Adult) | Portal | EC | blog | Search | Online<br>game |
|----------------|-------------|-------|------------------|--------|----|------|--------|----------------|
| # of TCP       | 65          | 83    | (Addit)<br>47    | 36     | 45 | 61   | 8      | 95             |
| port 80        | 35          | 77    | 47               | 34     | 43 | 59   | 8      | 86             |
| port 443       | 30          | 6     | 0                | 2      | 2  | 2    | 0      | 9              |
| # of DNS query | 20          | 20    | 4                | 13     | 11 | 17   | 4      | 19             |

|                | Online<br>Banking | Twitter | Facebook | iTunes | Cloud | IM | VoIP | ftp | ssh |
|----------------|-------------------|---------|----------|--------|-------|----|------|-----|-----|
| # of TCP       | 20                | 33      | 51       | 20     | 29    | 66 | 18   | 7   | 1   |
| port 80        | 2                 | 1       | 40       | 1      | 23    | 5  | 0    | -   | 0   |
| port 443       | 18                | 32      | 11       | 19     | 6     | 18 | 5    | -   | 0   |
| other TCP      | -                 | -       | -        | -      | -     | 43 | 13   | 7   | 1   |
| # of DNS query | 4                 | 12      | 18       | 7      | 6     | 17 | 4    | 2   | 0   |



# Impact on IPv6 introduction



#### IPv6 introduction impact

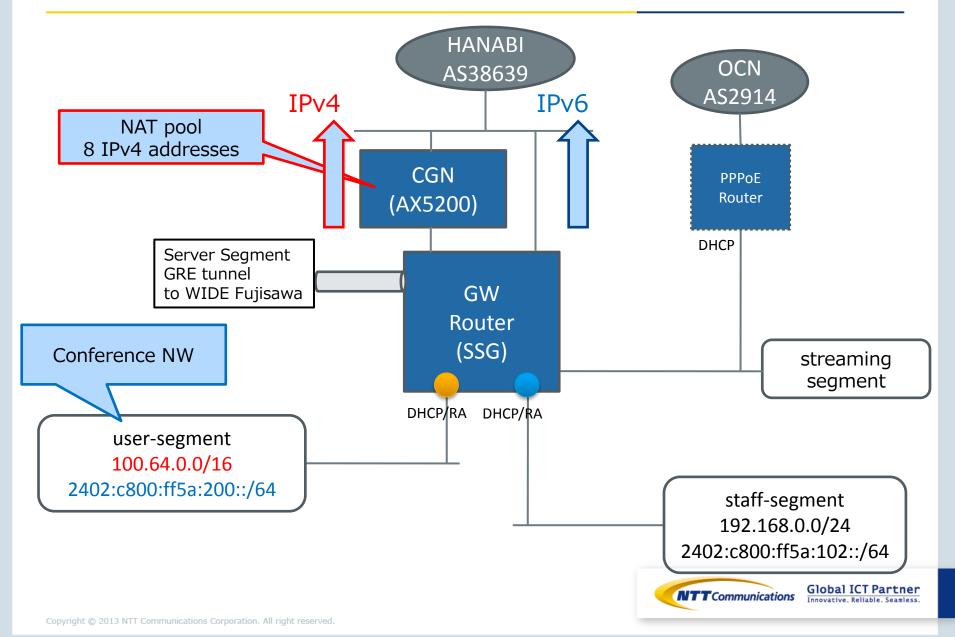
- Also we'd like to know how much IPv6 introduction could impact to the application behavior in general.
- We have evaluated this when we supported HTML5J conference which 1000+ users attended last year.



#### HTML5 conference 2013

#### The event

- Date 2013 Nov. 30 (Sat)
- For Web developers and designers
- At NTT Central Education Center (Chofu, Tokyo)


#### Number of the people attended

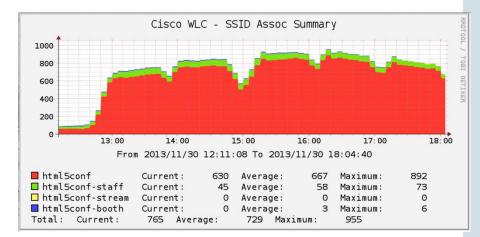
- General guest : 1003
- From sponsor company : 95
- Speaker : 52
- Invited guest : 10
- Staff / Volunteers : about 140
- Summary : about 1300

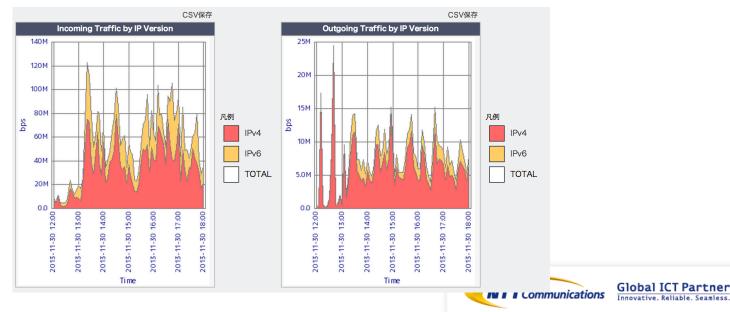




#### **NW** Configuration

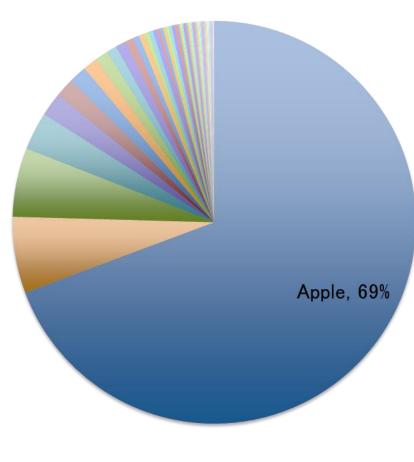



#### Actual observation


#### Max # of terminals

• 946 (from WLC Assoc. log)

#### Max IPv6 usage (volume)


• 61.24% (13:05)

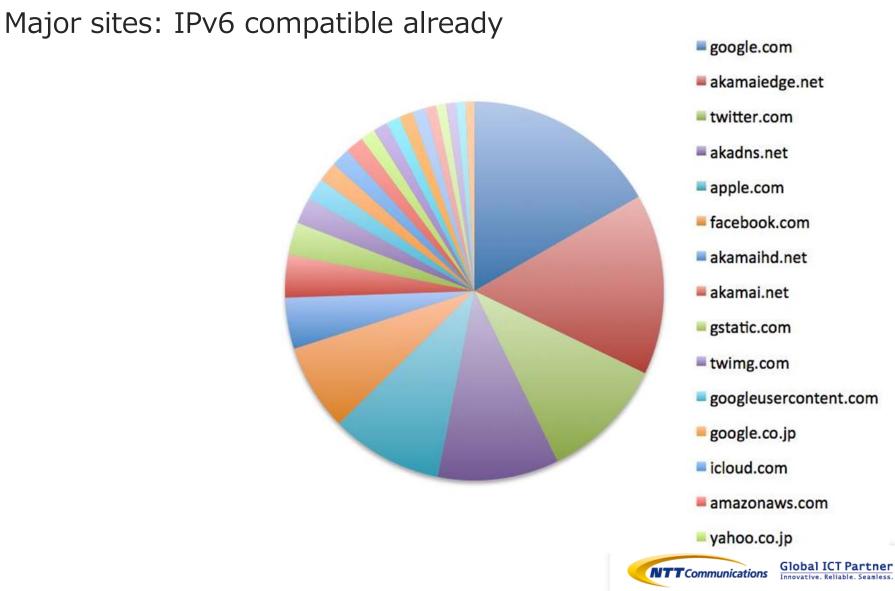




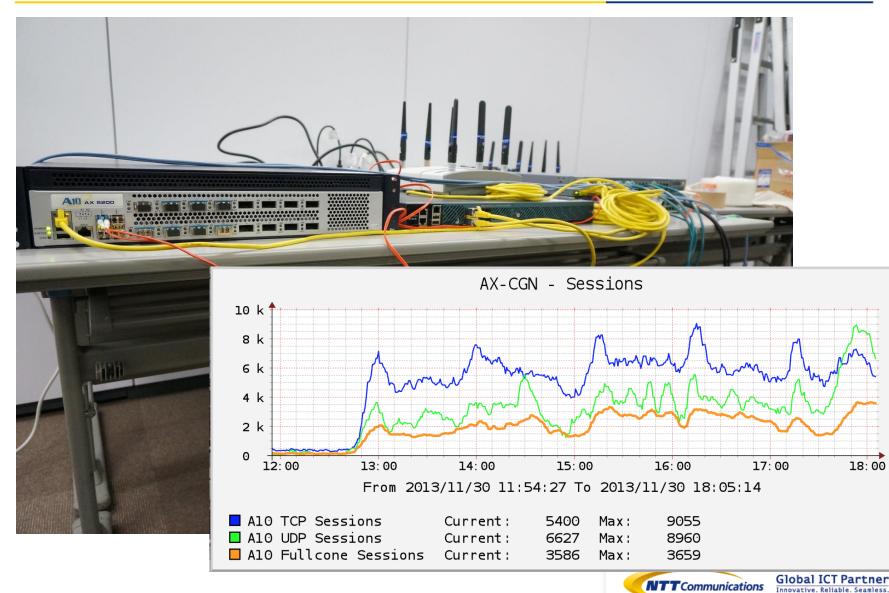
#### Which terminal venders ?

# When IPv6 hits the maximum : 13:10 (from MAC address log)



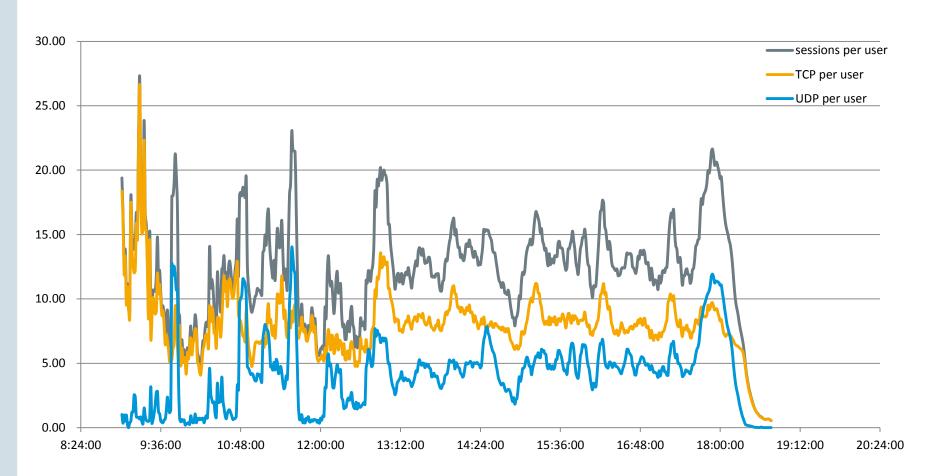

- Apple
- Intel Corporate
- CISCO SYSTEMS, INC.
- ASUSTek COMPUTER INC.
- Microsoft Corporation
- Murata Manufactuaring Co.,Ltd.
- Sony Mobile Communications AB \_\_\_\_\_
- ÉG Electronics
- Hon Hai Precision Ind. Co.,Ltd.
- Liteon Technology
- Corporation SAMSUNG ELECTRO-
- SAMSUNG ELECTRO-
- Murata Manufacturing Co., Ltd.
- SHARP Corporation
- Asustek Computer Inc
- MITSUMI ELECTRIC CO.,LTD

Fujitsu Limited




Global ICT Partner

#### DNS query

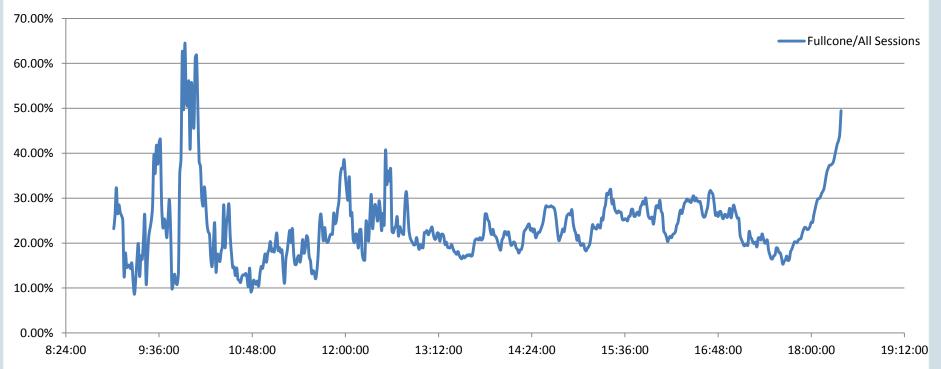



#### The number of IPv4 sessions through CGN



RRDTOOL

#### The number of sessions per user




It was limited by almost 30 or so, because off load to IPv6



#### Percentage of High-Port

**Fullcone/All Sessions** 



Over 60% of sessions are over 1024 which requires FullCone that consumes many CGN resources



#### As a result

- Even today, only google, facebook and few sites are IPv6 ready but they are so major. So, if we introduce IPv6, about 40-50% traffic (by volume of the number of the packet) will be carried by IPv6.
- Also quite many TCP sessions is also diverted to IPv6 transport so that we could reduce the impact on CGN quite a lot.
- Many applications uses non-well-known port (1024+) so that CGN will be loaded heavily.



### At the end



#### CGN now a days - at a glance -

- There are several CGN implementations commercially available in the market today
  - Works good mostly, but some issues especially around HA (High Availability) functions sometime
  - Catalogue specs are a bit suspicious ... ③
  - Careful network design is needed
- Many cellular phone operators have been deployed CGN in their network most aggressively recently
  - Some terrestrial services are following this trend
- IPv6 introduction will help CGN load a lot to reduce the cost



This research and experiment are conducted under the great support of Ministry of Internal Affairs and Communications of Japan

I thank all my colleagues working on this research in and out of my company very much

