

Outline

- DUMBONET background: disaster emergency communication research @ intERLab
- TakNet 1 : A rural community wireless mesh network
- TakNet 2 : A rural school wireless mesh network with an educational video-on-demand system

Disaster and communication infrastructure

Flood can disrupt electricity supply and destroy internet data centers

A collapsed bridge can cut down fiber optics -cutting communication to the whole region

TakNet 1 (2013)

A rural community wireless mesh network

Mobile Routers in TakNet1

- Very low-cost (~ US\$ 60 70) • Wi-Fi 802.11n 2.4GHz Max150Mbps
- 16 GB USB flash storage for
- community applications and video files
- Low-powered, max 5W < US\$ 0.70 per month
- Optional battery, for 4 5 hours of operations
- · Flashed with OpenWRT Linux
- firmware and configured with OLSR
- Selectable options on community application services
- · voice over IP
- video on demand
- social networking in community wireless mesh network

TakNet1 Deployment Strategy

- · Deployed by volunteers in March 2013
- Educational VoD service was introduced to the villagers
- A shared Internet Gateway node was added in May 2013
- Students and village people have been our enthusiastic users.
- Currently villagers are planning to share the cost of the shared Internet gateway

Motivations

- + IT IS IMPORTANT TO HAVE EMERGENCY NETWORKS READY WHEN A DISASTER STRIKES !!
- + PEOPLE SHOULD KNOW KNOW HOW TO USE THE EMERGENCY NETWORKS, PREFERABLY THROUGH OTHER DAILY ACTIVITIES
- + HENCE:
- Rural community disaster preparedness
- ICT literacy in rural area
- DUMBONET mobile routers can be adapted to serve these purposes.

Testbed Location : Thai Samakhi Village, Mae Sot District, Tak Province, THAILAND

Network was planned, installed, and tested by volunteers

Networking problems in rural schools

- Several hundreds students share a relatively slow internet gateway — many rural schools have < 10Mbps links
- Although some rural schools start to have fibre Internet connectivity provided by UNINET, the lack of quality EDU contents still plagues most schools.
- UNINET Fibre Internet and backbone could still easily be saturated, if hundreds of students simultaneously access high-bandwidth video contents.

Our proposed solution

- We attempt to bring High-Definition (HD) Educational Video on Demand (VoD) experience to students in rural schools
- VoD requires a significant amount of network bandwidth. Therefore, video caching and cache management prove very important!

Lessons Learned from TakNet 1

- Rural people, especially the youths, are more enthusiastic about technology and Internet.
- The number of ADSL parts available to the villagers are limited. Some households cannot have their ADSL yet. Cost of ADSL is still relatively high, when compared to villagers' incomes.
- Although 3G is available, 3G is volumelimited and much more expensive than ADSI

TakNet 2 (2014)

A rural school wireless mesh network with an educational video-on-demand system

