

Akamai CDN, IPv6 and DNS security

Christian Kaufmann Akamai Technologies APNIC 36 26th August 2013

Agenda

Akamai

Akamai Introduction

- Who's Akamai?
- Intelligent Platform & Traffic Snapshot

Basic Technology

- Akamai mapping
- Finding the IP address
- Downloading <u>www.example.com</u>

Akamai & IPv6 World Launch Anniversary

Akamai IPv6 Deployment and Observations

Secure the Internet

- Open recursors and reflection attacks
- BCP-38 and DNS server maintenance

Akamai Introduction

The Akamai Intelligent Platform

The world's largest on-demand, distributed computing platform delivers all forms of web content and applications

The Akamai Intelligent Platform:

Typical daily traffic:

- More than 2 trillion requests served
- Delivering over **15 terabits/second**
- 15-30% of all daily web traffic

Basic Technology

Akamai mapping

When content is requested from CDNs, the user is directed to the optimal server

- This is usually done through the DNS, especially for non-network CDNs, e.g. Akamai
- It can be done through anycasting for network owned CDNs

Users who query DNS-based CDNs be returned different A (and AAAA) records for the same hostname

This is called "mapping"

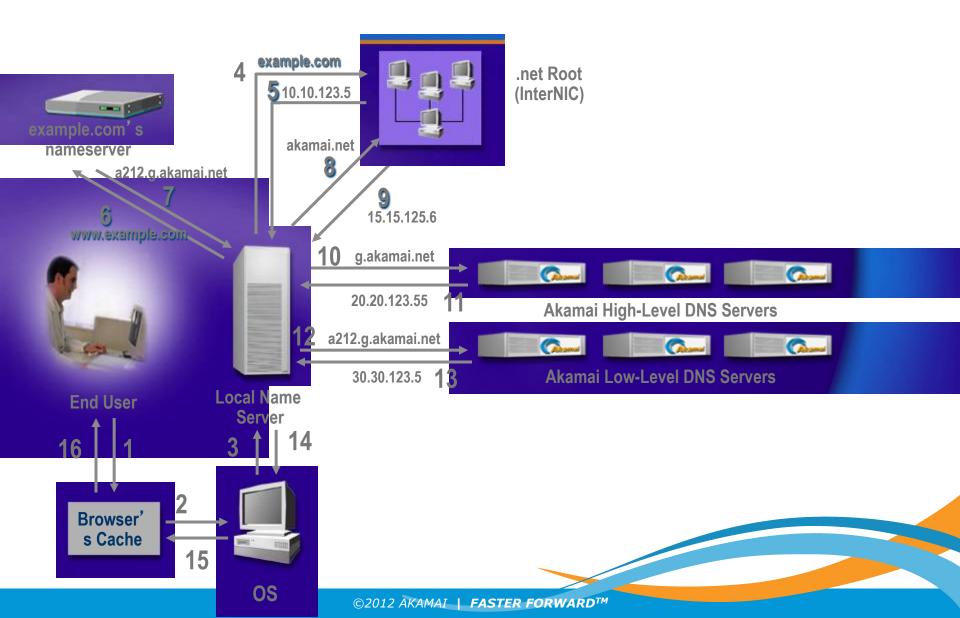
The better the mapping, the better the CDN

How Akamai CDN Work

Example of Akamai mappingNotice the different A records for different locations:

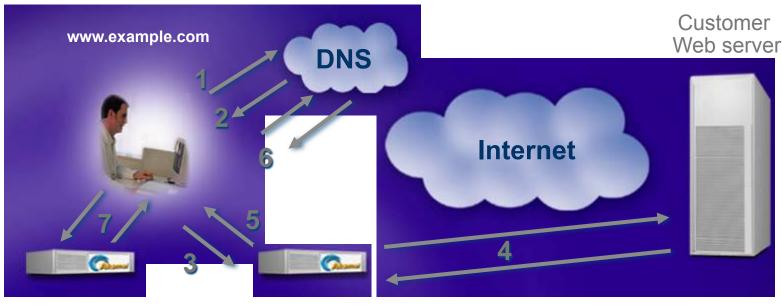
[NYC]% host www.symantec.com
www.symantec.com CNAME e5211.b.akamaiedge.net.
e5211.b.akamaiedge.net. A 207.40.194.46
e5211.b.akamaiedge.net. A 207.40.194.49

[Boston]% host www.symantec.com
www.symantec.com CNAME e5211.b.akamaiedge.net.
e5211.b.akamaiedge.net. A 81.23.243.152
e5211.b.akamaiedge.net. A 81.23.243.145



Akamai use multiple criteria to choose the optimal server

- These include standard network metrics:
 - Latency
 - Throughput
 - Packet loss
- These also include things like CPU load on the server, HD space, network utilization, etc.


Finding the IP Address: The Akamai Way

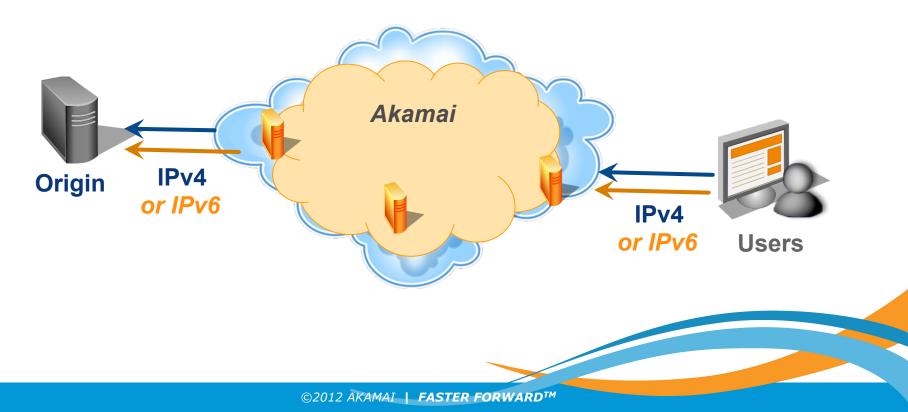
Downloading www.example.com with Akamai's EdgeSuite

- User enters www.example.com
- 1. Browser requests IP address for www.example.com
- 2. DNS returns IP address of optimal Akamai server
- 3. Browser requests HTML
- 4. Akamai server assembles page, contacting customer Web server if necessary

- 5. Optimal Akamai server returns Akamaized HTML
- 6. Browser obtains IP address of optimal Akamai servers for embedded objects
- 7. Browser obtains objects from optimal Akamai servers

Akamai & IPv6

World IPv6 Launch Anniversary


How we enable IPv6

Dual-stacking edge servers Customer properties can be dual-stacked • Terminate IPv4 and IPv6 connections in server software

• Can go forward to customer origin via IPv4 (or IPv6)

World IPv6 Launch Day: deployment status

In-production serving HTTP over IPv6 to users, tried to dualstack every server everywhere

As of 2012-06-06, IPv6 now live in...

- ... over 53 countries
- ... over 175 cities (in all continents except Antarctica)
- ... over 225 networks
- ... over 600 Akamai server locations
- ... over 37,000 Akamai servers

Compare to a total of 1070 networks in 83 countries

(many network providers don't have working IPv6 yet, not all networks have full IPv6 routing table)

Current deployment status

In-production serving HTTP over IPv6 to users, tried to dualstack every server everywhere

As of Jun 2013, IPv6 now live in...

- ... over 64 countries
- ... over 240 cities (in all continents except Antarctica)
- ... over 300 networks
- ... over 800 Akamai server locations
- ... over 70,000 Akamai servers

Compare to a total of 1100+ networks in 83 countries

(many network providers don't have working IPv6 yet, not all networks have full IPv6 routing table)

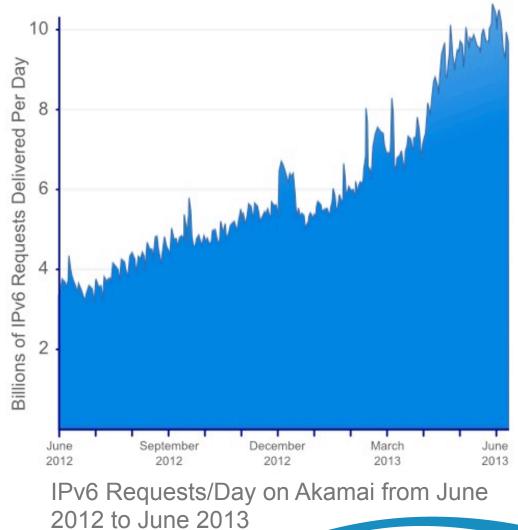
World IPv6 Launch Anniversary: A closer look from Akamai

IPv6 Addresses

- •2011:280,229
- •2012: 18,899,253

• 67x

• 2013: 200m – 300m • *10x*


IPv6 Requests/Day

- •2011: 8,343,590
- •2012: 3,394,971,156

• 460x

•2013: >10 billions

• 2.5x

World IPv6 Launch Anniversary: Observations

Top 10 IPv6 by Geo

Country	IPv6 as % of Requests
Switzerland	10.4%
Romania	7.7%
France	4.6%
Luxembourg	3.6%
Belgium	3.3%
United States of America	3.2%
Germany	2.9%
Japan	2.1%
Peru	2.1%
Norway	1.4%

Top 10 IPv6 by Network Provider

Network Operator	IPv6 as % of Requests	Primary Country	
Verizon Wireless	34.9%	U.S.A.	
Brutele (VOO)	29.7%	Belgium	
Free/Proxad	18.9%	France	
RCS & RDS	18.5%	Romania	
Swisscom	15.8%	Switzerland	
KDDI	9.9%	Japan	
AT&T	8.4%	U.S.A.	
Comcast	3.2%	U.S.A.	
Deutsche Telekom AG	3.4%	Germany	
Telefonica del Peru	2.6%	Peru	

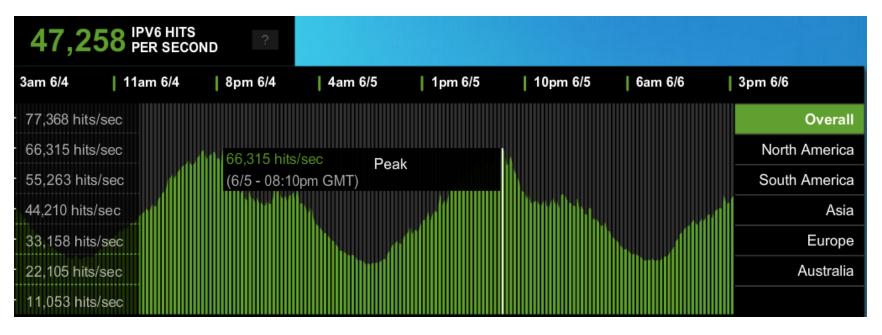
Mobile Operating System	IPv6 as % of Requests
Windows Phone OS 8	12%
BlackBerry OS 10	5.9%
Android 4.1/4.2 ("JellyBean")	10.8%
Android 4.0 ("Ice Cream Sandwich")	3.2%
Android 2.3 ("Gingerbread")	1.6%
Apple iOS 6	1.8%
Apple iOS 5	1.4%
Apple iOS 3/4	1.1%

- using Akamai's Mobile Browser Detection for categorization
- Within Android, there are individual device types where well over 50% of the traffic to dual-stacked websites arrived over IPv6.

World IPv6 Launch Anniversary: IPv6 and Desktop/Laptop Operating Systems

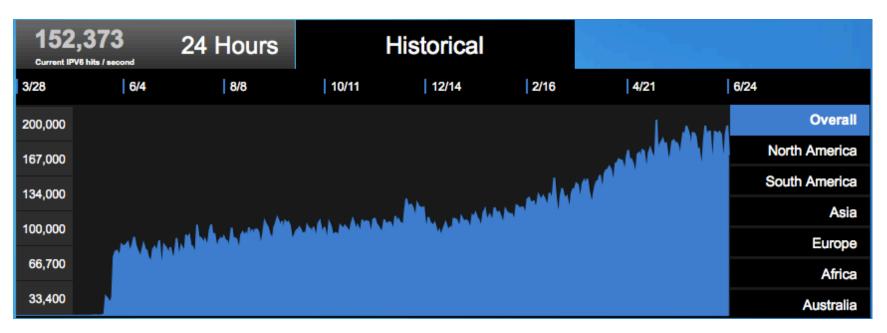
Operating System	Browser	IPv6 as % of Requests
Microsoft Windows 8		4.1%
Microsoft Windows Vista		3.3%
Microsoft Windows 7		2.5%
Microsoft Windows XP		0.5%
Mac OS X 10.5 & 10.6	Chrome & Firefox	3.4%
Mac OS X 10.5 & 10.6	Safari	3.3%
Mac OS X 10.7 & 10.8	Chrome & Firefox	3.3%
Mac OS X 10.7 & 10.8	Safari	2.1%

• Happy Eyeballs


World IPv6 Launch Anniversary: Three drivers of IPv6 growth

- 1. Content availability
 - Customers opting in to have their sites, content, and applications permanently available dual-stacked.
- 2. Availability of IPv6 from access network providers
 - IPv6 in production networks, e.g. Verizon Wireless, AT&T, and Comcast.
 - Some ISPs, Universities and Research Labs in Europe and Asia that have had IPv6 deployed
- 3. End-user device support
 - Recent desktop and laptop OS and client software supports IPv6
 - Many home routers / gateways start to support IPv6 recently.
 - 4G LTE smart phones.

Observations from World IPv6 Launch



Akamai has a lot of customers on IPv6

- Over 700 US government hostnames
- Over 20 US government agencies
- 1/3 of top-30 World IPv6 Launch Day participants (by Alexa rank), etc.

Those customers who were dual-stacked before World IPv6 Launch show 0.3% to 1.5% of their traffic on IPv6

Observations from World IPv6 Launch Anniversary

IPv6 traffic continue to growth steadily after World IPv6 Launch

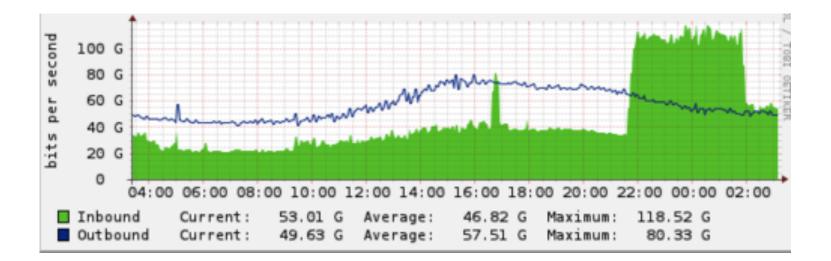
- 2x customers
- 2.5x daily IPv6 requests
- 2.5x dual-stack hostnames (over 1,600 US government hostnames)
- Users upgrade their devices over the next few years
- We really running out of IPv4!

Secure the Internet

Open recursors and DNS reflection attack

Recursors

Why?


- •Exist to aggregate and cache queries
 - •Not every computer run its own recursive resolver.
- •ISPs, Large Enterprises run these
- Query through the root servers and DNS tree to resolve domains
- Cache results
- Deliver cached results to clients.

25

The Problem!

• Example of DNS Based reflection attack exceeding 70Gbit.

Open / Unsecured Recursors ?

DNS server set up for recursion

- •i.e. non-authoritative
- •Will answer for zones it is not authoritative for
- Recursive lookups
- •Will answer queries for anyone
- •Some Public Services:

Google, OpenDNS, Level 3, etc.

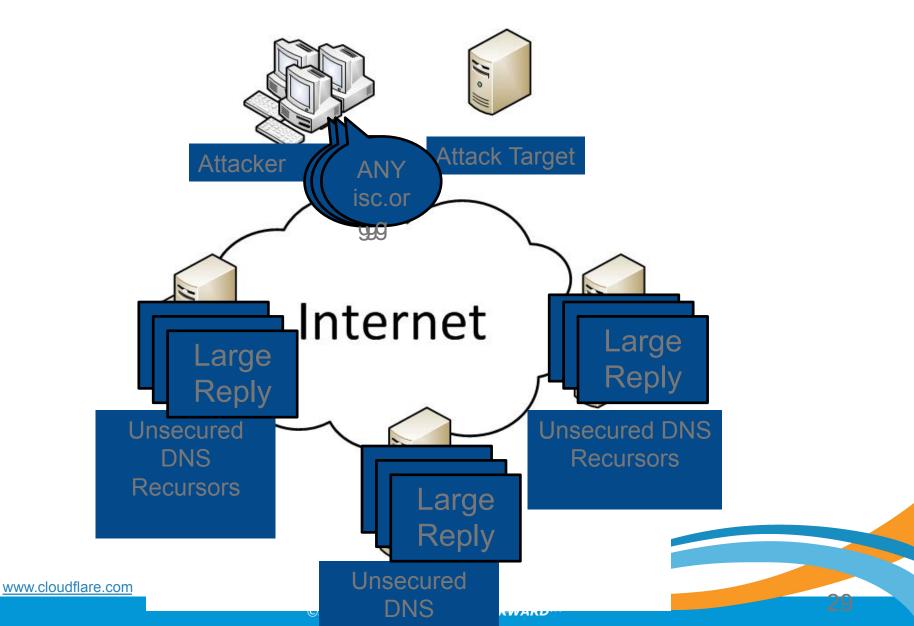
•These are "special" set-ups and secured.

Recursors

Say Again?

- There are hundreds of thousands of DNS Recursors.
- •Many of these are not secured.
- •Non secured DNS Recursors can and will be abused
- CloudFlare has seen DNS reflection attacks hit 300Gbit traffic globally.

Reflection Attack

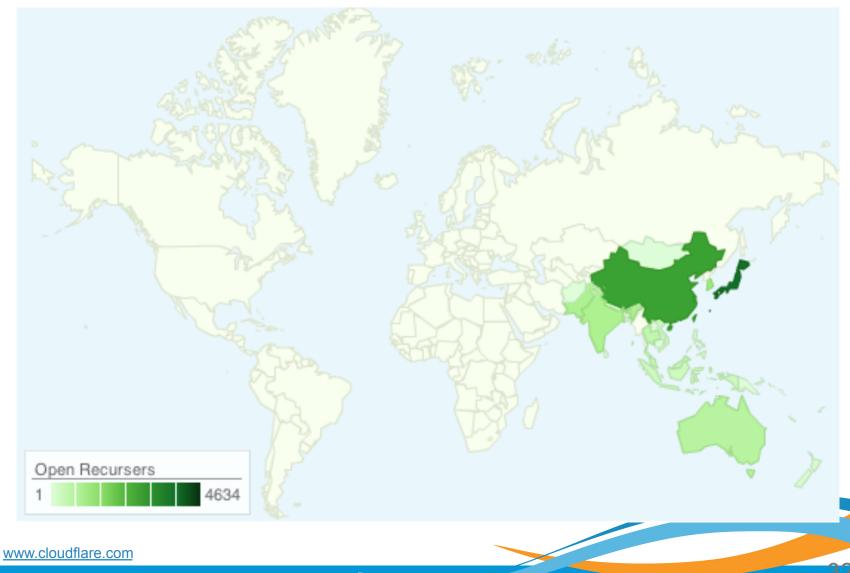


- •UDP Query
- Spoofed source
 - •Using the address of the person you want to attack
 - •DNS Server used to attack the victim (sourced address)
- Amplification used
 - Querying domains like ripe.net or isc.org
 - ~64 byte query (from attacker)
 - ~3233 byte reply (from unsecured DNS Server)
 - •50x amplification!

Running an unsecured DNS server helps attackers!

Reflection Attack

Reflection Attack


•With 50x amplification:

- •1Gbit uplink from attacker (eg: Dedicated Servers)
- •50Gbit attack
- Enough to bring most services offline!
- Prevention is the best remedy.
- In recent attacks, we've seen around 80,000 open/ unsecured DNS Resolvers being used.
- •At just 1Mbit each, that's 80Gbit!
 - 1mbit of traffic may not be noticed by most operators.
 - •80Gbit at target is easily noticed!

•Nearly Everywhere!

•CloudFlare has seen DNS Reflection attack traffic from:

- •27 out of 56 Economies in APNIC Region
- More attacks from higher populated economies.

<u>Country</u>	<u>Open</u> <u>Recursors</u>	<u>Country</u>	<u>Open</u> <u>Recursors</u>
Japan	4625	Bangladesh	103
China	3123	New Zealand	98
Taiwan	3074	Cambodia	13
South Korea	1410	Sri Lanka	7
India	1119	Nepal	7
Pakistan	1099	Mongolia	5
Australia	761	Laos	4
Thailand	656	Bhutan	2
Malaysia	529	New Caledonia	2
Hong Kong	435	Fiji	2
Indonesia	349	Maldives	2
Vietnam	342	Papua New Guinea	1
Philippines	151	Afghanistan	1
Singapore	118		

www.cloudflare.com

• Where are they running?

Mostly on Servers.

- ~11,000 Servers profiled.
- ~7,500 BIND
- ~1600 unknown / undetermined
- ~900 Microsoft DNS Server
- ~500 dnsmasq
- ~200 ZyWALL DNS (a consumer internet router)

Fixing this?

Preventative Measures!

•BCP-38

- Source Filtering.
- You shouldn't be able to spoof addresses.
- Needs to be done in hosting and ISP environments.
- If the victim's IP can't be spoofed the attack will stop
- Will also help stop other attack types
 - (eg: Spoofed Syn Flood).

Fixing this?

Preventative Measures!

- DNS Server Maintenance
 - Secure the servers!
 - Lock down recursion to your own IP addresses
 - Disable recursion
 - If the servers only purpose is authoritative DNS, disable recursion
 - Turn them off!
 - Some Packages (eg, Plesk, cPanel) have included a recursive DNS server on by default.

Consumer Internet Routers / Modems

- •Update firmware.
 - Some older firmware has security bugs
 - Allows administration from WAN (including DNS, SNMP)
- •Does the feature need to be on?
 - Make sure its set up properly

20

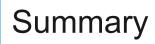
Information

•BCP-38:

http://tools.ietf.org/html/bcp38

•BIND:

http://www.team-cymru.org/Services/Resolvers/instructions.html


•Microsoft:

http://technet.microsoft.com/en-us/library/cc770432.aspx

•The Open Resolver Project:

http://openresolverproject.org/

©2012 AKAMAI | FASTER FORWARD™

Akamai Intelligent Platform

- Highly distributed edge servers
- Akamai mapping is different than BGP routing

IPv6 traffic is still small today, but catching up

- Dual-stack approach
- •IPv4 is really running out!

Secure the Internet

- •Open recursors and DNS reflection attacks
- •BCP-38 and DNS servers maintenance

Christian Kaufmann <ck@akamai.com>

More information: Peering: <u>http://as20940.peeringdb.com</u> IPv6: <u>http://www.akamai.com/ipv6</u>

Acknowledgement:

Tomas Paseka <<u>tom@cloudflare.com</u>>