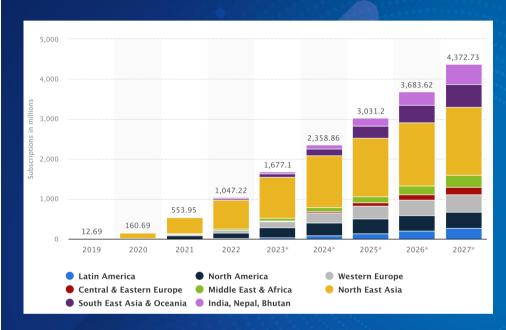
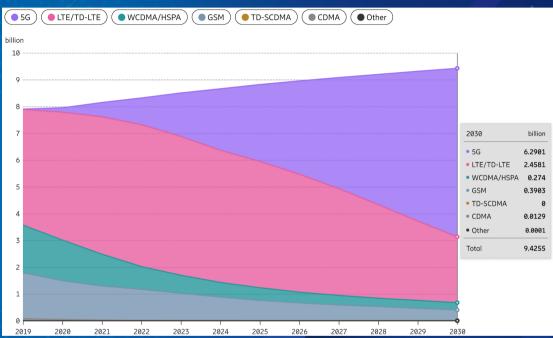


IPv6 for 5G and the Industrial Internet


Agenda

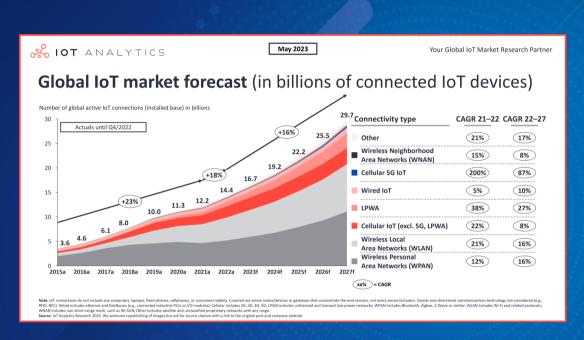

- **01** Why IPv6?
- Implementing IPv6 for 5G and IIoT
- Case studies
- Global IPv6 deployment status
- 05 Suggestions

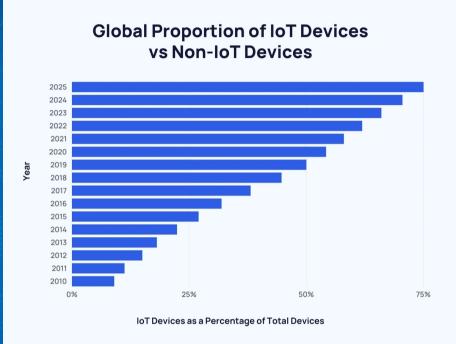
5G Forcecast

5G subscribers forecast to 2030 (source: Statista, Ericsson)

o 7/2025: Viet Nam has ~ 11 million 5G users (Viettel: ~ 6 mil; VNPT's Vinaphone: ~ 3 mil; Mobifone: ~ 2, 5 mil) (source: Telecom Review Asia)

IoT Forcecast

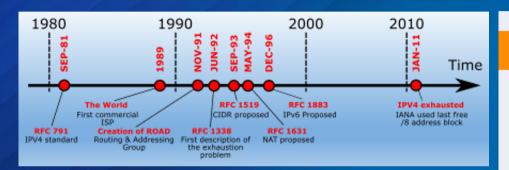

A network of interconnected devices, sensors, and machines within industrial settings that autonomously collect and exchange data in real-time, enabling enhanced monitoring, control, and optimization of industrial processes without the need for human intervention



Industrial Internet = Industrial IoT (IIoT) = IoT + Cloud + Big Data + AI in Industry

IoT Forcecast

Global IoT from 2015 to 2027 (source: IoT Analytics)


 Forecast to 2027: 15 million IoT devices in Viet Nam (source: Deloitte)

Why IP6

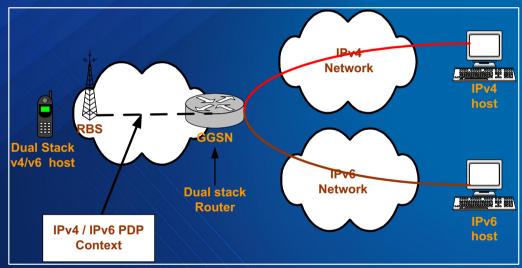
The critical role of IPv6 in 5G and IIoT

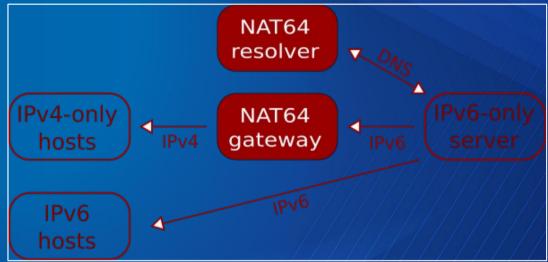
IPv4 IPv6 Deployed 1981 Deployed 1998 32-bit IP address 128-bit IP address 7.9x10²⁸ addresses 4.3 billion addresses Addresses must be reused and masked Every device can have a unique address Alphanumeric hexadecimal notation Numeric dot-decimal notation 50b2:6400:0000:0000:6c3a:b17d:0000:10a9 192.168.5.18 (Simplified - 50b2:6400::6c3a:b17d:0:10a9) **DHCP** or manual configuration Supports autoconfiguration

The limited address space of IPv4 cannot meet the demands of 5G and IIoT.

IPv6 is indispensable for 5G and IoT:

3 Enhances security, flexibility, and mobility





Implementing IPv6 for 5G and IIoT

The two most common methods of deploying IPv6

Dual - stack

IPv6 only

Pros and cons

- + **Smooth transition:** allows coexistence of IPv4 and IPv6 during migration.
- + **Compatibility:** supports both IPv4-only and IPv6-enabled applications.
- + Flexibility: operators can gradually migrate services without disruption.
- + Reliability: provides fallback to IPv4 if IPv6 connectivity is not available.

- Complexity: increased configuration and troubleshooting workload.
- + Resource demand: Requires more CPU, memory, and address management.
- + Not sustainable long-term:
 IPv4 exhaustion persists,
 operators must maintain CGNAT.

Dual-Stack is an effective transition solution, but not a long-term goal

Pros and cons

- + **Scalability:** virtually unlimited address space for billions of IoT/5G devices.
- + **End-to-end connectivity:** eliminates NAT, enabling direct communication.
- + **Better performance:** reduced overhead from translation mechanisms (e.g., NAT, CGNAT).
- + **Future-proof:** aligns with 5G Standalone (SA) design and Industry 4.0 requirements.
- + **Security readiness:** mandatory IPSec support, easier policy enforcement per device.

- + Legacy system compatibility: many existing IPv4-only applications and devices cannot connect.
- + Transition challenges: requires complete IPv6 readiness across network infrastructure.
- + Deployment cost: investment needed for upgrading or replacing non-IPv6 equipment.
- + Interoperability issues: external services or partners still using IPv4 may face access limitations.
- + Operational readiness: engineers and admins must be fully trained in IPv6.

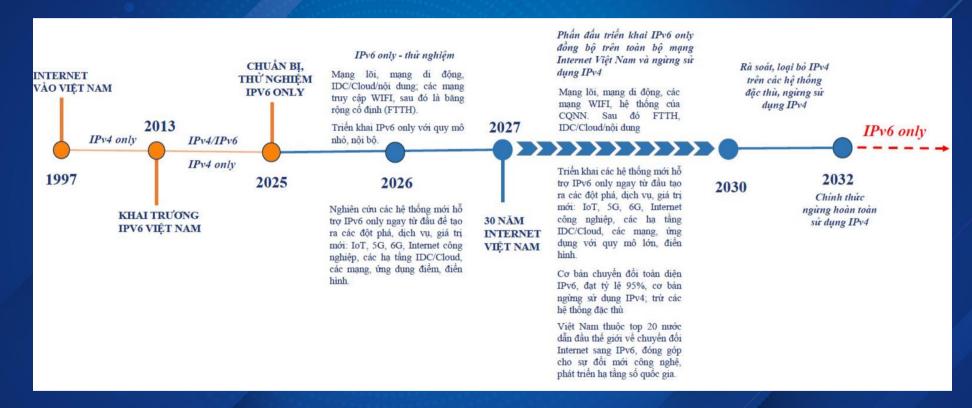
IPv6-Only is the optimal and sustainable solution for 5G/IoT, but it requires a fully ready ecosystem (apps, networks, end devices,...) to enable large-scale deployment

Case studies

Dual-Stack: ~50% operators (source: IETF)

| IPv6-Only: deploying mainly in mobile operators.

Examples of Operators deploying IPv6-Only (mainly in mobile networks):



Countries that have announced plans to deploy IPv6-Only:
 US, Germany, Czechia, China, India, Malaysia, Vietnam,.... (~ 2030)

Case studies

Vietnam's IPv6-only plan:

Case studies

VNPT's IPv6-only plan:

❖ ~ 2030: IPv6 only.

- **❖** Early 9/2025: current IPv6 implementation at VNPT:
 - > 75% FTTH subscribers.
 - > 89% mobile subscribers.
 - > 100% IDC.
- ❖ 5/2018: first operators in Viet Nam launched IPv6 for mobile users.
- ♦ 11/2016: launched IPv6 for FTTH subscribers.

Current IPv6 deployment status

IPv6 worldwide deployment (source: Google, Facebook)

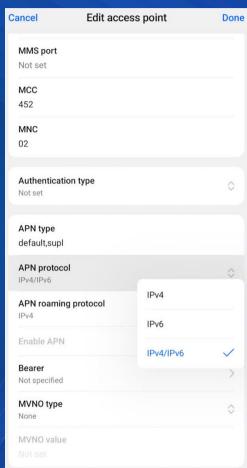
Current IPv6 deployment status

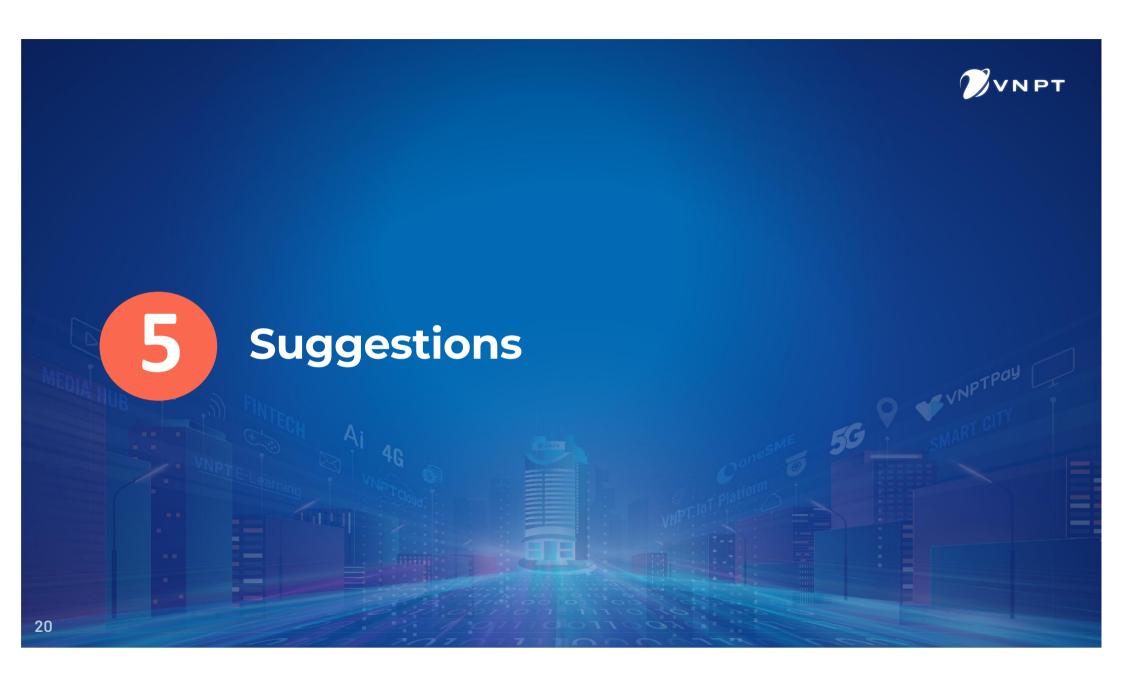
Google	IPv6	Country	Rank
--------	------	---------	------

Per-country ranking table based on data from Google IPv6 Statistics page.

#	Country	Adoption	Latency	Impact
1	II France	85.86%	-20ms	-0.02%
2	<u>Unknown Region</u>	78.97%	-10ms	-0.01%
3	■ India	75.16%	-10ms	-0.07%
4	■ Germany	74.18%	-10ms	-0.01%
5	■ Saudi Arabia	68.73%	-10ms	-0.04%
6	Malaysia Malaysia	65.55%	Oms	-0.08%
7	■ Belgium	64.56%	0ms	0.0%
8		59.73%	-60ms	-0.06%
9	■ Guatemala	56.98%	-10ms	-0.03%
10	■ <u>Israel</u>	55.87%	-20ms	-0.13%
11	united States	55.01%	-10ms	-0.04%
12	□ Uruguay	54.77%	0ms	-0.02%
13	• Japan	54.73%	Oms	-0.01%
14	<u>Vietnam</u>	54.16%	10ms	0.01%
15	■ Hungary	53.74%	-10ms	-0.02%
16	□ Sri Lanka	53.62%	-10ms	-0.02%
17	№ Nepal	53.05%	-10ms	-0.01%
18	Puerto Rico	52.99%	0ms	-0.01%
19	<u>■ Taiwan</u>	52.76%	-10ms	-0.0%
20	I ∗ I Mexico	51.83%	-10ms	-0.04%

(source: Google 9/2025)




Current IPv6 deployment status

Key factors affecting IPv6 adoption:

- Limited business incentives
- Application & content gaps
- Many manufacturers.
- Many types of devices.

Suggestions

- Ecosystem growth: Encourage apps, cloud, and digital services to adopt IPv6 and promote IPv6-only trials in 5G/IoT.
- □ Raise awareness of IPv6's long-term benefits among businesses and the public.
- Capacity building: Expand IPv6 training and certification programs for engineers.
- Financial support: Provide financial aid, tax incentives, and funding for IPv6 projects, manufacture, export/import,... (based on each country's policy).

Thanks to wour attention.