Setting Up a Telecom-Grade Temporary Conferencing Network

Tsung-Yi Yu

\$ whoami

- Undergraduate CS Student in Taiwan
- Expertise: Kubernetes, Networking and SDN
- Experience
 - 2022: Site Reliability Engineering Intern at LINE
 - 2024: Research Assistant at National University of Singapore (NUS)
- Fellowships & Awards
 - o 2021 APAN
 - 2022 APNIC 54 Fellowship program
 - o 2023 APSIG Fellowship program
 - o 2025 APNIC Policy Pilot Fellowship program
- Delivered presentations at over 10 technical events in Taiwan

Introduction and Objectives

- Conference networking remains a significant challenge for event organizers, as stability and high throughput are paramount.
- Inspired by APNIC's conference network architecture, we aim to leverage this opportunity to deploy a telecom-grade temporary network.
- Full autonomy and optimal routing.
- Obtaining a temporary AS number and announcing our own IP address space.

Network Topology: Connect to the Internet

- Most IXPs and NSPs Located Exclusively in Data Centers.
- Challenges of Data Center-to-Venue Connectivity.

Survey the resources: Layer 1

Obtain the fiber-optic conduit map from the Government

Building Fiber Optic Site Survey

Survey the resources: Layer 2

Requirements and Purpose

- Long-distance link requiring a connection back to the main server room.
- Must interface with multiple upstream providers and Internet Exchanges.
- Must operate as a trunk port, carrying multiple VLANs.
- Minimum port speed of 10 Gbps.

IP Transit Layer 3 & IP Resources

Get the IP Resources

• Apply the AS and temporary IP (prop-156) from the APNIC.

prop-156: Assignment of Temporary IP Resources

Proposal text	prop-156-v002
Objective	This proposal suggests reserving the /21 IPv4 prefix from the non-103/8 pool, as well as a /29 IPv6 prefix and 8 Autonomous System numbers, for delegation to events such as conferences and any other reason that APNIC deems appropriate and for which a long-term assignment would not be feasible.
Current status	Implemented
Author	Christopher Hawker
Relevant forum	Policy SIG
Previous versions	prop-156-v001

BGP and OSPF Layer 3

How we setup the WiFi AP?

Device list

- Aruba AP535 * 10
 - Connected via 10G Ethernet port with PoE support.
 - Installed using a camera tripod with mounting bracket.

Services that we set up.

Netbox

- Integration of DCIM and IPAM
- IP address allocation
- DNS configuration
- Device management
- Highly customizable
 - Custom fields
 - Custom export templates
- Provides data sources for network automation
- REST API and GraphQL API available

BGP Tools Looking Glass

- Integration with bgp.tools.
- Allowing users to perform online BGP route lookups.

RIPE Atlas

• Testing the routing

WireGuard VPN

- Connects to internal networks, e.g., IPAM, Grafana, IPMI, or routers.
- SNATs traffic to the Internet using the IP address (if needed).

Akvorado Flow

Sankey Graph

Grafana Monitor Dashboard

Write a Net Stats Exporter to export the IPv4/IPv6 traffic

https://github.com/YiPrograms/net-stats-exporter

That's all.

Challenges Encountered

- Time.
- Communication.
- Lots of communication.
- Still more communication.
- People can be challenging.

You won't know the outcome unless you try, so don't give up before you start.

This is our philosophy for success.