

Comprehensive measurement of IPv6 address interface identifier pattern in current IPv6 deployment

Wei Zhang, Gang Ren, Xia Yin, Lin He
Tsinghua University
9/3/2024

CONTENTS

- Background
- Motivation
- Method
 - Data Collection
 - Pattern Analysis
- Result
 - Patterns of Servers & Routers & Clients
 - Trends of Mail Servers & Clients
- Conclusion

Background

- What is IPv6 Address Interface Identifier (IID)?
 - Component of IPv6 Address
 - Used to identify interface on a link
 - > 64 bits in most cases

Architecture of Global Unicast Addresses

Background

■ How are IIDs assigned?

Mechanism	RFC	Pattern Pattern		Scanning Difficulty	Privacy Issue	
Modified EUI-64	4291	IEEE-based	****:**ff:fe**:***	Medium	Yes	
Temperary Address	8981	Randomized	**********	1.10-1	N.I	
Stable Address	7217	Kandomized		High	No	
		Low-byte	0000:0000:00**:****	Low	No	
Managally	/	Embedded-port	IPv4 address in IID	Low	No	
Mannually		Emdedded-IPv4	0192:0168:0001:0001	Medium	No	
		Byte-pattern	zero bytes > 2	Medium	No	
ISATAP	5214	ISATAP	0200:5efe:****:**** 0000:5efe:****:****	Medium	No	
Teredo	4380	Teredo	IPv6 prefix 2001:0000::/32	Medium	No	

Background

Previous work: RFC 7707

+ Address type	Percentage
IEEE-based	1.44%
Embedded-IPv4	25.41%
Embedded-Port	3.06%
ISATAP	0.00%
Low-byte	56.88%
Byte-pattern	6.97%
Randomized	6.24%

+	++
Address type	Percentage
+	++
Low-byte	70.00%
+	· +
IPv4-based	5.00% I
+	·+
l SLAAC	1.00%
+	++
Wordy	<1.00%
WOIGY	1.00%
Randomized	1 400/
Kandomized	<1.00%
+	
Teredo	<1.00%
+	++
Other	<1.00%
+	++

+	++
Address type +	Percentage
IEEE-based	7.72%
Embedded-IPv4	14.31%
Embedded-Port	0.21%
ISATAP	1.06%
Randomized	69.73%
Low-byte	6.23%
Byte-pattern	0.74%

Figure 1: Measured Web Server Addresses Figure 4: Measured Router Addresses Figure 5: Measured Client Addresses

Motivation

- No comprehensive measurement of IID patterns after RFC 7707
- Low accuracy for identifying random IIDs
 - Random addresses cannot be scanned practically

Motivation

How to recognize Random IID?

- Probability-based^[1]
 - o must have between 27 and 35 set bits
 - o the first 32 bits must have between 9 and 21 set bits
 - o the last 32 bits must have between 10 and 22 set bits
 - o must not have two or more 'words' in it
- ➤ Rule-based^[2]
 - If an IID does not match any rule of pattern (IEEEbased, Low-byte, etc.), then it is a Randomized IID

$$\frac{1}{2^{63}} \sum_{\substack{9 \le i \le 21, 10 \le j \le 22 \\ 27 \le i+j \le 35}} {31 \choose i} {32 \choose j} \approx 0.7335.$$

only capable of identifying approximately three-quarters of random IIDs

Identify FFFF:FFFF:FFFF as a Randomized IID

- [1] David Malone. 2008. Observations of IPv6 Addresses. In Passive and Active Network Measurement
- [2] Fernando Gont. IPv6 Toolkit. urlhttps://github.com/fgont/ipv6toolkit/addr6.

Methodology - Overview

Methodology - Data Collection

- Public Domain Names
 - OpenIntel^[1]
- BitTorrent Application
 - Download 2000+ seeds with a BT client
- Traceroute
 - scamper

~Aiexu_m	561 (61					
S_{w}	Server	1,069k	Openintel web server			
S_n	Server	45k	Openintel ns server			
S_m	Server	Server 37k Openintel				
S	Server	1,119k Openintel server				
C_{bt}	Client	165k	BitTorrent client			
R_{bgp}	R_{bqp} Router		Traceroute BGP::1			
R_s	Router	120k	Traceroute S			
R_{bt}	Router 116k		Traceroute C_{bt}			
R_{s_edge}	Router	51k	Edge router of R_s			
R_{bt_edge} Router		60k	Edge router of R_{bt}			
$\stackrel{-}{R}$	Router	295k	All router			

Num

195k

30k

21k

Comment

Alexa web server

Alexa ns server

Alexa mx server

Type

Server

Server

Server

Name

 S_{Alexa_w}

 S_{Alexa_n}

SAlexam

[1] OpenINTEL: Active DNS Measurement Project. https://www.openintel.nl/

Methodology - Data Collection

Public Mailing Lists

Viewing List:

FILTER BY TIME

<u>Anytime</u>

Past day

Past week

Past month

Past year

FILTER BY FROM

Methodology - Data Collection

Public Mailing Lists

- > news.gmane.io
 - Public Mailing List: 30k
 - o From 2004 to 2023
 - Client IPv6 Address: 43k
 - Mail Server IPv6 Address: 1,563k
 - $\circ S_{ml_2023}$: 0.26%
 - $\circ S_m: 50\%$

Methodology - Pattern Recognition

Seed-based Random IID Recognition

- If an IID does not match any rule of pattern (IEEE-based, Low-byte, etc.) and it does not similar to any IID in a list of IPv6 address (seeds), then it is a Randomized IID
- > Hitlist pattern: a special type of manually configured pattern
- > Seeds: IPv6 Hitlist (https://ipv6hitlist.github.io/, 9M addresses)
- https://github.com/will-zhang/iidpattern

Method - Pattern Recognition

- Seed-based Random IID Recognition
 - If the first 4 bytes or the last 4 bytes of two IIDs are the same, then the two IIDs are considered similar
 - > false negative rate: 0.17%
 - o Generate 10 million random IIDs, then test how many IIDs are Hitlist pattern(false negative)

false negative rate for different length

Results

■ The measurement was conducted in January 2024

Results - Server IID Patterns

Randomized pattern is severely overestimated

> addr6: 67%

> Our method: 21%

Dataset	Randomized	Hitlist	Teredo	Embedded-IPv4	Byte-pattern	IEEE-based	Embedded-port	Low-byte
S_{w}	21.52%	47.93%	0.00%	12.75%	8.76%	0.27%	0.40%	8.36%
S_n	1.86%	4.62%	1.06%	20.62%	4.38%	1.07%	6.86%	59.52%
S_{m}	3.22%	13.06%	1.60%	27.45%	3.52%	1.53%	3.50%	46.11%
S	20.67%	46.23%	0.05%	12.85%	8.58%	0.33%	0.70%	10.59%

Results - Server IID Patterns

Increased IPv6 address scanning difficulty

- 1.The dataset used in RFC 7707 is closely related to S_{Alexa}
- 2. * denotes results derived using addr6

Results - Client IID Patterns

- C_{bt} VS C_{ml_2023}
- C_{ml_2013} VS RFC 7707
- Reduced IPv6 address privacy risk

Dataset	Randomized	Hitlist	Teredo	ISATAP	Embedded-IPv4	Byte-pattern	IEEE-based	Embedded-port	Low-byte
2013[11]	69.73%	/	/	1.06%	14.31%	0.74%	7.72%	0.21%	6.23%
C_{ml_2013}	79.14%	0.60%	0.12%	0.00%	3.36%	0.12%	8.87%	0.48%	7.31%
C_{ml_2023}	86.93%	0.65%	0.00%	0.00%	2.27%	0.97%	1.51%	0.32%	7.34%
C_{bt}	77.96%	1.96%	0.07%	0.00%	2.44%	2.20%	8.10%	0.11%	7.15%
						L			

Results - Router IID Patterns

- High privacy risk for client edge routers
- Increased IPv6 address scanning difficulty

Dataset	Randomized	Hitlist	Embedded-IPv4	Byte-pattern	IEEE-based	Embedded-port	Low-byte
2008[11]	<1.00%	/	5.00%	-	<1.00%	-	70.00%
R_{bqp}	2.65%	3.19%	12.29%	12.14%	1.87%	3.02%	64.83%
R_s	0.33%	2.20%	14.24%	21.45%	0.50%	2.49%	58.79%
R_{s_edge}	0.70%	2.38%	17.29%	14.46%	1.00%	2.60%	61.58%
R_{bt}	22.13%	3.86%	7.71%	9.71%	10.49%	1.20%	44.89%
R_{bt_edge}	36.07%	2.68%	5.91%	6.21%	17.66%	0.45%	31.02%
\overline{R}	9.67%	2.91%	10.93%	14.80%	4.93%	2.09%	54.66%

Results - IID Pattern Trend

Mail Server

Results - IID Pattern Trend

Client

Conclusion

- The scanning of IPv6 addresses has become significantly more challenging for servers and routers
 - Increased use of Randomized addresses
 - Decreased use of Low-byte addresses
- Server Randomized pattern is severely overestimated with current method
 - > High rate of false positive for existing tools to recognize random addresses
- The risk of privacy breaches for clients has been further reduced
 - Decreased use of IEEE-based addresses.
- The privacy risks caused by client edge routers is a concern
 - ▶ 18% of IEEE-based address
- Public mailing list is an alternative source for obtaining IPv6 addresses

Future work

More data sources

- Server logs
- Network traffic

Public mailing lists

- IPv6 deployment rates in different countries
- market share among different hardware manufacturers
- •

Q&A

Wei Zhang: zhang-w22@emails.tsinghua.edu.cn

Gang Ren: rengang@cernet.edu.cn