The Inconsistency Issue between the Looseness of ROAs and VRPs

Beijing Zhongguancun Lab, Tsinghua University

Shuhe Wang, Ke Xu, Qi Li, Zhuotao Liu, Xingang Shi, Hui Wang, Xiaoliang Wang

BGP: vulnerable to route hijacking

AS path a-b is shorter than a-c-d:AS b is able to hijack prefix p

RPKI: validate the prefix-origin matching

Q1: What is the looseness of ROAs & VRPs[1]?

Definition of loose ROAs

• **Previous definition of loose**^[1] **ROAs:** *not all* sub-prefixes of the maximum length allowed by whom are advertised in BGP

Definition of loose ROAs

- **Previous definition of loose**^[1] **ROAs:** *not all* sub-prefixes of the maximum length allowed by whom are advertised in BGP
- Renewed definition of loose ROAs: an ROA R that fails to satisfy the following restrictions:
 - For any IP address I covered by R, there always exists an advertised route:
 - Whose prefix p covers I
 - Which is validated as valid (not necessarily validated by R)
 - Whose prefix length L is the longest among all advertised routes whose prefixes cover I
 - Whose prefix length $L \ge L_m$, where L_m is R's MaxLength

Vulnerabilities of loose ROAs

Vulnerabilities:

- Super-prefix hijack^[1]
- Forged-origin hijack

Vulnerabilities of loose ROAs

Vulnerabilities:

- Super-prefix hijack
- Forged-origin hijack^[1]

definitions

Definition of loose VRPs

An active ROA R is loose if fails to satisfy the following restrictions:

- For any IP address I covered by R, there exists an advertised route;
 - Whose prefix p covers I
 - Which is validated as valid (not necessarily validated by R)
 - Whose prefix length L is the longest among all advertised routes whose prefixes cover I
 - Whose prefix length $L \ge L_m$, where L_m is R's MaxLength

AVRPV on a router is loose if it fails to satisfy the following restrictions:

- For any IP address I covered by V, there exists a route in the router's local RIB:
 - Whose prefix p covers I
 - Which is validated as valid (not necessarily validated by V)
 - Whose prefix length L is the longest among all routes in the local RIB whose prefixes cover I
 - Whose prefix length $L \ge L_m$, where L_m is V's MaxLength

Content

Q2: Do ROAs & VRPs have consistent looseness?

Visions of prefix-origin matchings

- Answer to Q2: Sadly no, because an originally announced route may not be able to advertised to another observer AS
- Setting of observation of route visibility across the world
 - 28 feasible VPs (vantage point): feasible means each VP can collect most advertised IPv4 routes (> 900000)
 - 27 Route Views VPs across all 5 RIRs + I CERNET VP (located in Beijing)

Count of VPs	Total	APNIC	RIPE NCC	ARIN	LACNIC	AFRNIC
feasible	28	6 + I	4	10	4	3

• We define the prefix-origin matching in a route that is visible to all VPs as fully visible matching, otherwise it is called partially visible matching

Received matchings:

- I.0.1.0/24,AS I
- 1.0.2.0/23.AS 2

Received matchings:

- 1.0.1.0/24,AS I
- 1.0.3.0/24.AS 2

Received matchings:

Fully visible matchings

Partially visible matchings

- 1.0.2.0/23,AS 2
 - 1.0.3.0/24,AS 2
- 1.0.4.0/24,AS 3

Visions of prefix-origin matchings

ROV states of partially/fully visible matchings (in total)

ROV states of partially visible matchings on each VP

Observation I: obviously diverse visions of prefix-origin matchings on different VPs

Classification of partially visible matchings

Unilaterally (partially) visible

• for a unilaterally visible Matching M, in those ASes where the matching is invisible, there is no matching whose prefix is overlapped with M's prefix.

Bilaterally (partially) visible

• For a bilaterally visible route M, in those ASes where the matching is invisible, there exists another visible matching whose prefix is overlapped with M's prefix (These 2 matchings are called a conjugate matching pair).

- Further classification of conjugate matching pair:
 - SPDO: same prefix, different origin AS. SPDO matching pair is the result of MOAS prefixes.

DPDO: both origin AS and prefixes are different.

1.0.3.0/24,AS 3

Received matchings:

1.0.4.0/24.AS 4

Received matchings:

1.0.1.0/24,AS I

No matching in received matchings has prefix overlapping with 1.0.1.0/24

Received matchings:

1.0.2.0/24,AS 2

Received matchings:

Received matchings:

1.0.2.0/23.AS 3

Received matchings:

1.0.4.0/22,AS 40

Classification of partially visible matchings

Numbers and ROV states of unilaterally/bilaterally visible matchings (in total)

ROV states of conjugate DPSO pairs

shorter prefix \ longer prefix	valid	Invalid ASN	Invalid length
V alid	-	0	1807
Invalid-asn	8	-	20
Invalid-length	37	0	-
Not-found	51	8	6

ROV states of conjugate DPDO pairs

shorter prefix \ longer prefix	valid	Invalid ASN	Invalid length
Valid	-	205	90
Invalid-asn	189	-	9
Invalid-length	I	0	-
Not-found	25	13	4

Observation 2: different types of partially visible matchings differ greatly in terms of ROV

Content

Q3: Why could partially visible matchings emerge?

Routing policies with hidden danger

- Answer to Q3:
 - Certain BGP routing policies at a transit AS could manipulate a route's matching
 - The matching then becomes partially visible when it continues to spread from the transit AS to other observer ASes
 - We call such policies as "policies with hidden danger"

Type I: explicit route filtering

- Typical policies:
 - Import / Export filtering
 - Route blackhole
 - Route damping
- Effect
 - Explicit Route filtering could contribute to *unilaterally visible matchings*
 - Any address covered by the filtered prefix is vulnerable to super-prefix hijack and forgedorigin hijack

Filter out D

- VRP I:AS I, 202.127.16.0/22-22 (D)
- VRP 2:AS 2, 202.127.16.0/22-22 (E)
- VRP 3:AS 3, 202.127.24.0/22-22 (F)
- VRP 4:AS 4, 202.127.28.0/22-22 (G)

Prefix-origin matching of attack route in super-prefix hijack: AS 666, 202.127.16.0/20 (A)

Attack route in forged-origin hijack: Prefix-origin matching: AS I, 202.127.16.0/22 (D), AS PATH: ***-AS666-ASI

Type 2: implicit route filtering

- A possible combination of routing policies:
 - (MOAS prefix with different origin ASes are announced, but only one matching issues ROA)
 - Route selection at the ROV-disabled router filters the valid route and keeps the invalid route
 - ROV-enabled router filters the invalid route
- Effect
 - There will be no route for any address covered by the prefix, so it is also vulnerable to super-prefix hijack and forged-origin hijack.

Type 3: route de-aggregation

- Description
 - Route de-aggregation will suppress the original route, and generate one or a few routes whose prefixes are the sub-prefixes of the original prefix, while the origin AS is unchanged
- Effect
 - Route de-aggregation could generate **DPSO** matching pairs.
 - If de-aggregated prefix length is longer than its matching VRP's maxLength:
 - it will be validated as invalid-length and get dropped
 - the address covered by the de-aggregated prefix will also be vulnerable to super-prefix hijack and forged-origin hijack

- VRP
 - VRP I:AS I, 202.127.16.0/21-21 (B)

Prefix-origin matching of attack route in super-prefix hijack: AS 666, 202.127.16.0/20 (A)
Attack route in forged-origin hijack: Prefix-origin matching: AS 1, 202.127.16.0/21 (B), AS PATH: ***-AS666-AS1

Type 4: route aggregation

- Description
 - Route aggregation will suppress the original routes, and generate an aggregated route whose prefix is the super-prefix of all original prefixes
- Effect
 - Route aggregation could generate either DPSO or DPDO matching pairs.
 - The ROV state of the aggregated route could be one of all possible states.

- VRP I:AS I, 202.127.16.0/22-22 (D)
- VRP 2:AS 2, 202.127.16.0/22-22 (E)
- VRP 3:AS 3, 202.127.24.0/22-22 (F)
- VRP 4: AS 4, 202.127.28.0/22-22 (G)
- VRP 5:AS 5, 202.127.16.0/20-20 (A)

Type 4: route aggregation

- Description
 - Route aggregation will suppress the original routes, and generate an aggregated route whose prefix is the super-prefix of all original prefixes
- Effect
 - Route aggregation could generate either DPSO or DPDO matching pairs.
 - The ROV state of the aggregated route could be one of all possible states.

Type 4: route aggregation

- Description
 - Route aggregation will suppress the original routes, and generate an aggregated route whose prefix is the super-prefix of all original prefixes
- Effect
 - Route aggregation could generate either DPSO or DPDO matching pairs.
 - The ROV state of the aggregated route could be one of all possible states.

Content

Q4: **How** to eliminate the inconsistency issue between the looseness of ROAs and VRPs?

Possible Solutions

Conclusions

- ✓ Loose ROA and VRPs are vulnerable to route hijacking including super-prefix hijack and forged-origin hijack.
- ✓ Non-loose ROAs don't necessarily lead to non-loose VRPs because observer ASes may fail to receive partially visible matchings of prefixes and their origin AS.
- ✓ There are multiple types of partially visible matchings, each of which are possibly caused by a unique type of routing policy with hidden danger in transit AS, including route filtering, route de-aggregation and route aggregation.
- ✓ To eliminate the inconsistency issue between the looseness of ROAs and VRPs, the core proposal is to try to eliminate the vulnerabilities loose VRPs will bring.

Thank you!

Welcome to discuss with me at wangsh@mail.zgclab.edu.cn