

Good Bot, Bad Bot:

Characterizing Automated Browsing Activity APNIC 52

Nick Nikiforakis

Who am I?

- Associate Professor at Stony Brook
- Areas of research
 - Online tracking
 - DNS Security
 - Web application fingerprinting
 - Mobile Browser Security
 - Attack surface reduction
 - Honeypots and deception
 - Anti-bot technologies

Pra

Web bots

- Web bots are programs that interact with websites in automated ways
 - Benign bots
 - Page indexing, link previews, malware detection
 - Malicious bots
 - Scraping, brute-forcing credentials, stealing backup/configuration files, exploiting vulnerabilities

Source: Imperva Bot Report, 2021

Detecting benign web bots

- Benign bots announce themselves
- Google
 - IP address: 66.249.66.1
 - User Agent: Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)
- Bing
 - IP address: 40.77.167.41
 - User Agent: Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)

Detecting malicious web bots

- This is more challenging
- Malicious bot strategy #1
 - Pretend to be a known benign bot (Googlebot/Bingbot/etc.)
 - Scrape/attack with administrators fearing the blocking of a known benign crawler
 - No one wants to block Googlebot
- Defenses
 - Reverse-DNS the IP address claiming to be a bot

User Agent	IP address	Reverse DNS	
Mozilla/5.0 (compatible; Googlebot/2.1	66.249.66.1	crawl-66-249-66- 1.googlebot.com	\checkmark
Mozilla/5.0 (compatible; Googlebot/2.1	67.245.115.115	cpe-67-245-115- 115.nyc.res.rr.com	0

Detecting malicious web bots

- Malicious bot strategy #2
 - Pretend to be a regular user
- Steps that malicious bots can take
 - Spoof User Agents
 - Simulate user actions
 - Low-and-slow
 - Use proxy servers
- Defenses (open ended)
 - Anomaly detection
 - Timing of requests
 - Types of requests
 - IP address blocklists
 - CAPTCHAs when suspicious
 - ???

Page Views: Exit Time: Resolution: System:	e 📮	1 Apr 28 2021 21:03:07 800x600 Chrome 87.0 Win10	Total Visits: Location: IP Address: Referring URL: Visit Page:	1 Eos Angeles, California, United States Multacom Corporation (173.82.104.167) www.isvoc.com/ 년 https://securitee.org/ 년
Page Views: Exit Time: Resolution: System:	e 📮	1 Apr 28 2021 21:03:07 800x600 Chrome 86.0 Win10	Total Visits: Location: IP Address: Referring URL: Visit Page:	1 Los Angeles, California, United States Multacom Corporation (173.82.104.167) www.isvoc.com/ 년 https://securitee.org/ 년
Page Views: Exit Time: Resolution: System:	e 📮	1 Apr 28 2021 21:03:07 800x600 Chrome 87.0 Win10	Total Visits: Location: IP Address: Referring URL: Visit Page:	1 Los Angeles, California, United States Multacom Corporation (173.82.104.167) www.securemymind.com/ 2 https://securitee.org/ 2

Robotic yet circular dependencies

Prior Academic Solutions: Manual filtering of web-server logs

Research questions

- Can we curate a bot-only dataset in a way that doesn't depend on our manual-analysis prowess?
 - Benign vs. malicious bots
 - Activities of malicious bots
 - Claimed vs. actual identity of malicious bots
 - Trends of bot-activity over time

Network of honeysites

- Aristaeus
 - A system that provides flexible remote deployment and management of honeysites
 - Honeysites:
 - Fully-functional web applications, augmented with stateof-the-art fingerprinting techniques
 - A centralized log server pulls logs from each honeysite on a daily basis
 - Injected in a distributed database (Elastic Search)

Overview of Aristaeus

Overview of Aristaeus

What's the best bait?

- Deployed web applications
 - WordPress, Joomla, Drupal, PHPMyAdmin, and Webmin
 - Tens of years of development
 - Hundreds of vulnerabilities
 - Millions of installations
 - Content Management Systems and System Administration tools
 - Promise of data and Remote Code Execution

Client fingerprinting

- Javascript API support
 - Basic support test
 - document.write(), var img …
 - Ajax support
- Browser fingerprinting
 - What information can we gather from common JS APIs?
- Support for security policies
 - CSP, X-Frame-Options, Mixed Content (HTTP/HTTPS) ,etc.

One slide primer on TLS handshakes

- In TLS ClientHello, Clients inform Servers of their TLS capabilities
 - TLS versions
 - Ciphersuites

Everyone's different

Different TLS Clients implement things slightly differently

- Chrome/Chromium support GREASE, a mechanism for catching interoperability issues between clients and servers
- Firefox and Safari do not support GREASE
- Command-line tools built using Python, curl, Perl, will have different TLS libraries than both Chrome and Firefox

"tlsfp":	{
	"ciphersuite": "0xC02F 0xC030 0xC02B 0xC02C 0xCCA8 0xCCA9 0xC013
	0xC009 0xC014 0xC00A 0x009C 0x009D 0x002F 0x0035 0xC012 0x000A
	" <u>tls_version</u> ": "0x0303",
	" <u>sig_alg</u> ": "0x0401 0x0403 0x0501 0x0503 0x0601 0x0603 0x0201 0x0203 ",
import "net/http"	"src_port": 22260,
	"record_tls_version": "0x0301",
<pre>resp. err := http.Get("https://example.com/")</pre>	"timestamp": "2020-04-25 03:55:59", 🦉 🖓 🖓 👘 👘 🐂 🧹
(cop), cri : neep.coc((neepo.,, cxampio.com,)	"server_name": "www.historytenantfile.com",PG//ent
	"ipv4_src": "167.71.193.105",
	" <u>e_curves</u> ": "0x001D 0x0017 0x0018 0x0019 ",
	" <u>extensions</u> ": "0x0000 0x0005 0x000A 0x000B 0x000D 0xFF01 0x0012 ",
	"ciphersuite_length": "0x0020",
}	

Overview of Aristaeus

Deployment of Aristaeus

- Register 100 domains
 - One condition: Domains should have never been registered before
 - Avoid residual-trust traffic from old sites and buggy systems
 - No public advertisement of these domains
- Spawn one honeysite for each domain
 - 100 VMs in AWS
 - North America, Europe, and Asia
 - Let's Encrypt automatically used to get valid TLS certificates
- 7-month long experiment recording everything and anything

By the numbers

Daily traffic

- We keep observing new sources, for the entire 7 months
- Average of 1,235 requests per day

Site discovery

- Since we never advertised our domains, how do bots find us?
- Inspect the Host header of clientside HTTP headers:
 - 44% of bots visit through the IP address
 - 30% present no Host header
 - 26% explicitly ask for our domains
 - Certificate transparency
 - Zone files
 - Prior crawls

```
"hastorensic": true,
"flog": {
    "headersText": [
    "Host:52.3.222.202",
    "User-Agent:Mozilla/5.0 (Windows NT 10.
    "Accept:*/*\n"
  ],
    "headersKV": {
        "Nonce": "ap",
        "Host": "52.3.222.202",
        "Accept": "*/*\n",
        "User-Agent": "Mozilla/5.0 (Windows NT
    },
    "request": "GET / HTTP/1.1",
    "fid": "XqOyiz0QYdqDT09GefocHgAAAAI"
```

20

\checkmark =exists, X =does not exist, \bigcirc =not accessible

\checkmark =exists, X =does not exist, \bigcirc =not accessible

 \checkmark =exists, X =does not exist, \bigcirc =not accessible

- Clear evidence of tailored attacks
 - Bots first identify that a site is WordPress-powered
 - Then, they start bruteforcing credentials
- Implication: If you don't run multiple types of applications, you won't see a malicious bot

Wordpress -	99.78 Ø	98.33 Ø	99.72	0.10	39.25
Joomla -	0.09	0.53	0.14	99.47	37.46
Drupal -	0.02	0.46	0.05	0.15	9.04
PHPMyAdmin -	0.04	0.45	0.05	0.13	8.16
Webmin-	0.08	0.23	0.05	0.15	6.10

JavaScript and Bot Behaviors

- Out of 1.7M sessions, only 11K (0.63%) supported JavaScript
 - No JavaScript, no JavaScript-based fingerprinting
 - Fingerprints submitted on only 0.59% of sessions
- Honoring of robots.txt
 - We did not observe <u>any</u> violations of robots.txt
 - Popularity of fake disallow entries?
- Shared/Distributed crawling
 - 42.8% of requests with valid cache-breakers bore different IP addresses
 - Widely observed in Google bots (19.6% of all reuse)
 - No re-used cache breakers in malicious bots

Good bot or bad bot?

- We classify the connecting bots as follows:
- Benign
 - Verified search-engine bots
 - Bots by security researchers and companies
- Malicious
 - Sending unsolicited POST requests towards auth endpoints
 - Send fingerprinting-related, vulnerabilityrelated requests
- Other
 - Remainder... we don't know much about those

Туре	Total SEBot Requests	Verified Requests
Googlebot	$233,\!024$	210,917 (90.5%)
Bingbot	$77,\!618$	77,574 (99.9%)
Baidubot	$2,\!284$	61 (0.026%)
Yandexbot	$4,\!894$	4,785 (97.8%)
Total	317,820	293,337 (92.3%)

Bad Bots Brute-forcing

- Credential brute-forcing attempts
 - 50.8% of total requests
 - 47,667 unique IP addresses
 - Trying common passwords as well as the domain itself
 - <u>www.example.com</u> as a password for admin panel of example.com
 - 99.6% of bots issued fewer than 10 attempts
 - "Spray and pray"
 - We had observed the same phenomenon on SSH honeypots, in 2017 [A]

[A] Barron et al. "Picky Attackers: Quantifying the Role of System Properties on Intruder Behavior", ACSAC 2017

Bad bots: Reconnaissance

- Application fingerprinting
 - Attempting to infer the version of a web application or its plugins
 - Matched requests against signatures of WhatWeb and BlindElephant
 - 223K requests, 12K bot IP addresses
- Exploitation attempts
 - We focused on server-side exploits from exploit-db (593 signatures)
 - 238K requests, 10K bot IP addresses

Path	# requests	Unique IPs	Target applications
/CHANGELOG.txt	116,513	97	Drupal, Joomla, Moodle and spip
/(thinkphp TP)/ (public index)	55,144	3,608	ThinkPHP
/wp-content/plugins	32,917	2,416	WordPress
/solr/	23,307	919	Apache Solr
/manager/html	10,615	1,557	Tomcat Manager

Path	# requests	Unique IPs	CVE/EDB-ID
/vendor/phpunit/ /eval-stdin.php	70,875	346	CVE-2017-9841
/scripts/setup.php	67,417	1,567	CVE-2009-1151
/?XDEBUG_SESSION _START=phpstorm	23,447	7	EDB-44568
/?a=fetch&content= <php>die(@md5(HelloThinkCMF))</php>	21,819	953	CVE-2019-7580
/cgi-bin/mainfunction.cgi	20,105	2,055	CVE-2020-8515

Bad bots: Reconnaissance

- Searching for backdoors
 - shell.php, cmd.php, up.php
 - 144K requests, 6.7K unique IP addresses
- Searching for unprotected files
 - .old, .sql, .php~, .zip, .bak, .env
 - 52K requests, 5.8K unique IP addresses
- 929 bots did all of the above
 - Minority of bots willing to keep attacking until they are either blocked or they run out of vectors

29

Bots and TLS fingerprinting

- Unlike JS fingerprinting, TLS fingerprinting worked really well
 - 558 unique fingerprints shared over 10M requests
 - Small number of tools and libraries
- 86.2% of bots claiming Firefox/Chrome were fake
 - Matching signatures of curl, libwww-perl, Go, and Python
- Exploitation attempts do not match real browser fingerprints

Tools	Unique FPs	IP Count	Total Requests
Go-http-client	28	15,862	8,708,876
Libwww-perl or wget	17	6,102	120,423
PycURL/curl	26	3,942	80,374
Python-urllib 3	8	2,858	22,885
NetcraftSurveyAgent	2	2,381	14,464
msnbot/bingbot	4	1,995	44,437
Chrome-1(Googlebot)	1	1,836	28,082
Python-requests 2.x	11	1,063	754,711
commix/v2.9-stable	3	1,029	5,738
Java/1.8.0	8	308	1,710
MJ12Bot	2	289	28,065
Chrome-2(Chrome, Opera)	1	490	66,631
Chrome-3(Headless Chrome)	1	80	2,829
Chrome-4(coc_coc_browser)	1	4	101
Total	113	38,239	9,879,326

Case studies

- Failed cloaking attempts
 - Bots sending two user agents
 - "User-Agent" and "userAgent"
 - Host-header weirdness
 - HOST, hoSt
- Time to weaponize
 - 5 RCE vulnerabilities got discovered during our 7-month study
 - Aristaeus could now observe how fast attackers weaponize a new exploit

Software/Firm ware	CVE	Time to weaponize
MSSQL Reporting Servers	CVE-2020-0618	4 days
Liferay Portal	CVE-2020-7961	4 days
DrayTech modems	CVE-2020-8585	2 days
Netgear GPON router	EDB-48225	Same day
F5 Traffic Management UI	CVE-2020-5902	Same day

Conclusion

- As more software moves to the web, so do attackers
 - Cood Bot, Bad Bot, sine Activity Even unpopular sites are scanned thousands of times a month by malicious bots
- Honeypots and deception technology can help us attract them and fingerprint them
 - For modest operational costs, Aristaeus outperforms popular OSINT blocklists
 - Identify trends in attacker techniques, tools, and sp exploit weaponization

Story Brook University

the web

 Communication details can betray a client identity

nick@cs.stonybrook.edu www.securitee.org

Nick Nikiforakis Stony Brook University

benientmaticin

that

he sole purpt en-month-

ploying

fore.

recorded

discover

each

analy