THE TCP AUTHENTICATION OPTION (TCP-AO)

Melchior Aelmans Juniper Networks

Engineering Simplicity

- What are we protecting?
 - -Long-lived TCP sessions
 - Examples
 - Routing protocols (BGP, LDP)
 - Long-lived TCP sessions between other applications
- What are we protecting against?
 - -Blind insertion attacks
 - -Replay attacks

BLIND INSERTION ATTACK ON A BGP SESSION

- Router A maintains a BGP session with Router B
 - They exchange many routes over many hours
- Node C sends a few packets per second to Router B for many hours
 - IP source address: Router A (spoofed)
 - Payload: TCP
 - RST bit set
 - Source and destination ports: BGP (179)
 - Random sequence numbers
- B discards most packets, because their sequence numbers are invalid
- Sooner or later, C sends a packet with a valid sequence number

BGP session resets

LEGACY SOLUTION: TCP-MD5 [RFC 2385]

- Sending and receiving nodes are configured with a pre-shared key
- Sending node procedures
 - Calculate a Message Authentication Code (MAC) for each TCP segment
 - Use MD5 to calculate MAC
 - Calculate MAC over the TCP segment and the pre-shared key
 - Include an MD5 Signature Option in each segment
 - MD5 Signature Option includes MAC
- Receiving node procedures
 - Calculate a MAC for each received TCP segment
 - Discard the packet if the calculated MAC does not match the received MAC

TCP-MD5 IS DEPRECATED

- New requirements
 - Change pre-shared keys without resetting TCP session
 - Support multiple authentication algorithms
- Pre-shared key change
 - It is difficult to change TCP-MD5 pre-shared keys without resetting the TCP session
 - It is difficult to reset TCP sessions that support BGP
 - Therefore, TCP-MD5 pre-shared keys were rarely changed
- Authentication algorithm agility
 - MD5 has been replaced by stronger authentication algorithms
 - Even stronger authentication algorithms are expected in the future

TCP-AO [RFC 5925] REPLACES TCP-MD5

- Supports
 - Pre-shared key change without resetting TCP session
 - Multiple authentication algorithms

TCP-AO CONCEPTS

- Master Key Tuple (MKT)
 - One or more MKTs are configured on each node
 - Used to derive traffic keys
- Traffic key
 - Used to generate a MAC for each TCP segment
- TCP-Authentication Option
 - Used to authenticate TCP segments
 - Contains a MAC, KeyID and RNextKeyID
 - KeyID identifies MKT and traffic key that were used to generate MAC
 - RNextKey identifies MKT and traffic key that the receiving node should use when generating a MAC for the next segment it sends

MKT CONTENTS

- A TCP connection identifier
 - Source address, destination address, source port, destination port
 - Wildcards allowed
- A TCP Options flag (determine which TCP options are covered by MAC)
- Identifiers
 - Sending: Used to generate KeyID on outbound segments
 - Receiving: Used to resolve KeyID on inbound segments
- An authentication algorithm
- Master key (i.e., keying material)
- A key derivation algorithm

PULLING IT ALL TOGETHER: KEYING

- Each node is each configured with one or more MKTs
- Each node derives four traffic keys from each MKT
- Each node independently determines which MKT is active
 - Method is beyond the scope of RFC 5925
 - Many implementations specify a start-time and an end-time for each MKT

PULLING IT ALL TOGETHER: AUTHENTICATION

- Sending node procedures
 - Calculate a Message Authentication Code (MAC) for each TCP segment
 - Use the appropriate authentication algorithm
 - Calculate MAC over the TCP segment and an active traffic key
 - Include a TCP-AO in each segment
 - MD5 Signature Option includes MAC, KeyID and RNextKeyID
- Receiving node procedures
 - Calculate a MAC for each received TCP segment
 - Use algorithm and traffic key associated with the received KeyID
 - Discard the packet if the calculated MAC does not match the received MAC

RELATIONSHIP WITH GTSM [RFC 5082]

- GTSM protects eBGP sessions
 - -Sender sets TTL to 255
 - -Receiver rejects packets containing eBGP if TTL is less than 254
- TCP-AO still needed to protect eBGP sessions from attackers that are one hop away
- TCP-AO still needed to protect iBGP sessions from internal attack

IMPLEMENTATION STATUS AND FURTHER READING

Implementation status:

- Juniper Networks: Committed for 20.3R1 (20.3R1 release candidate tested with Nokia)
- Nokia: SR OS 16.0.R15, 19.10.R7 and 20.5.R1 (interop tested with Juniper)
- Cisco: Stable since IOS XR 6.6.3 and 7.0.1

Further reading:

- Nokia & Juniper interoperability test: https://github.com/TCP-AO/Interoperability-testing
- Configuration examples: <u>https://github.com/TCP-AO/Configuration-examples</u>

THANK YOU

Engineering Simplicity