

LI Vendor Perspective

Upload Version 3

APNIC 50, Sep 2020 Jeff Brower, Signalogic CEO

Signalogic, not under NDA

Contents

LI Vendor Perspective

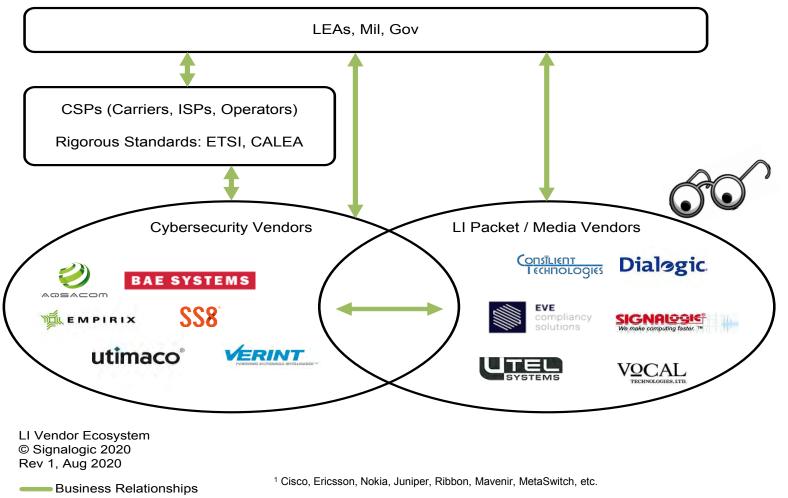
LI Vendor Ecosystem

Perspective of today's presentation

LEA Expectations

- Audio Quality
- Capacity
- Reliability
- User defined signal processing

Challenges

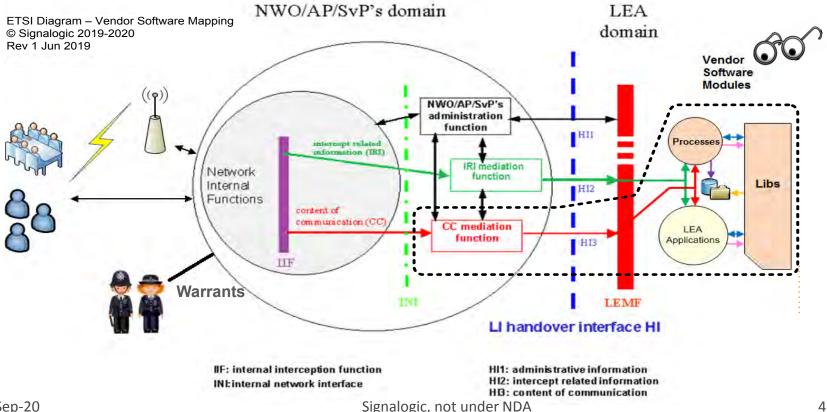

- Stream alignment
- Crazy packet send rates
- Encapsulated media

What's Coming

- Edge computing (5G cloud)
- ASR, diarization
- Containerization, Kubernetes

LI Vendor Ecosystem

- Approximate view only ... lots of overlap
- Excluding gateway, SBC, router vendors ¹

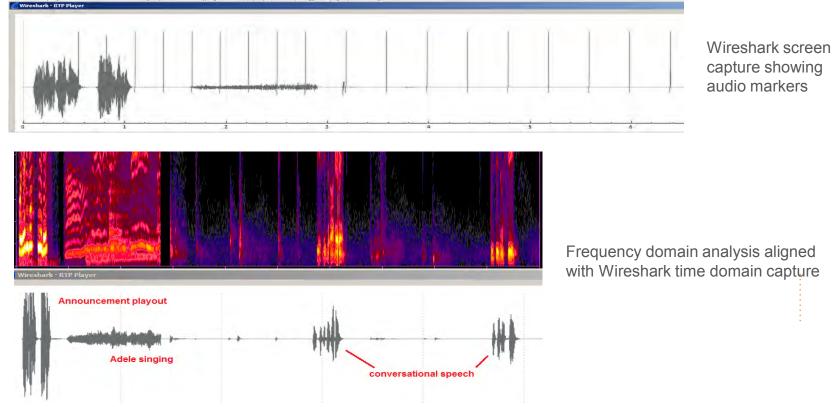

Signalogic, not under NDA

Packet / Media Perspective

- ETSI LI Terminology: CC mediation (communication content), HI3 (Handover • **Interface port 3)**
- Packet Handling
 - Jitter buffer, packet repair, rate adjustment
- Media •
 - Decoding (AMR, AMR-WB, EVS, more), stream alignment

Signal Processing •

- Stream merging, conferencing, speech recognition


Audio Quality

LEAs are obsessive about audio quality

- "no sound left behind" repair lost packets to extent possible, recover gaps due to slow packet send rates, deal with fast send rates by detecting silence
- some use metronomes, duck quacks, whale sounds, etc to check timing and frequency integrity. Not kidding

We use a wide range of techniques to verify LEA test cases

- visual audio markers to verify timing, audio frame repair, etc
- frequency domain analysis

Capacity

• LEAs expect extreme per-box / per-VM performance

- LI vendor is allowed a specific number of cores, no exceptions
- the telecom influence is strong a long history of applications coded for high capacity, real-time performance

Linux makes it difficult

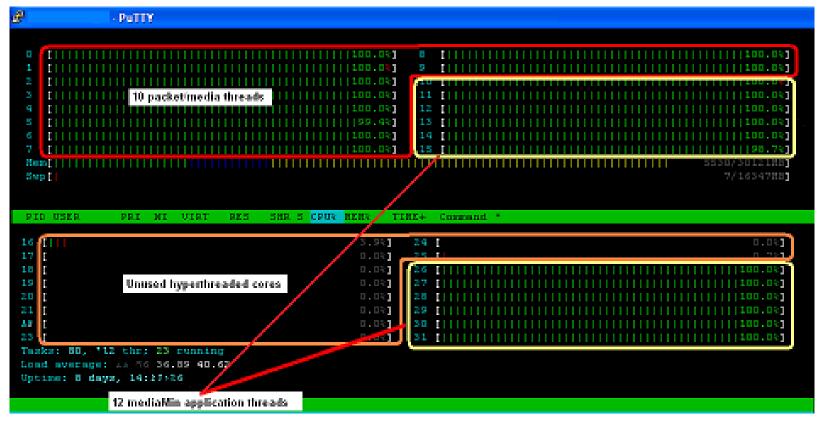
- not deterministic, not a small footprint RTOS
- LEAs and carriers know that "software defined solutions" are not deterministic, but no excuses are allowed
- we have several alarms to detect "thread preemption" things that Linux housekeeping and other user applications may do to impede performance

DPDK¹ can help in some cases

Others

- Texas Instruments exited the multicore CPU market in 2016, no longer an option
 - they had an effective solution, 64 cores on an x8 PCIe card, but were unable to embrace servers, open source, and modern development methods
 - they're now an "analog company" facing existential pressure from US mergers and competition in China
- GPUs are typically not helpful
 - no help with packet processing
 - only a small subset of media processing can be accelerated
 - each x86 core needs a dedicated GPU card PCIe lane to maintain max performance

¹ Data Plane Development Kit – refers to non-Linux x86 cores dedicated to packet processing


Capacity, cont.

• We use htop and other tools to scrutinize x86 core usage

- hyperthreading must be disabled
- stream groups must not split across cores

- packet/media threads
- application threads
- disabled hyperthread cores

Reliability

LEAs are also obsessive about reliability

- extremely long calls are common. Every code and packet data wrap that could occur must be tested
- as with capacity, the telecom influence pervades. "5 9s" up time is a minimum

LEAs run stress tests for weeks at a time

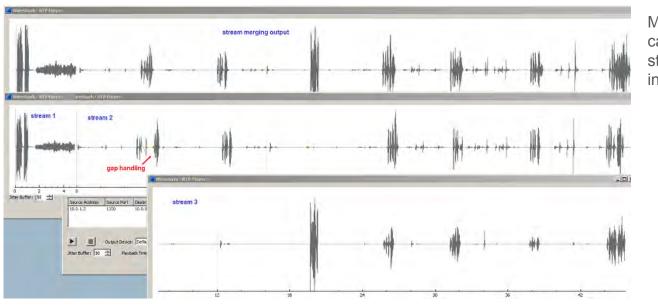
- we run stress tests for 2+ months
- tests include pcaps with artificial wraps, 10x packet push rates, deliberate thread preemptions, more
- tests run at max per-box / per-VM capacity ratings

Application Specific Signal Processing

- Common for mil/gov guys to ask for specific signal processing.
 Some examples:
 - "deduplication" due to multiple intercepts of the same end point (with different latencies)
 - removing room echo / reverb
 - AGC
 - separating overlapped talkers / conversations
- Less common for LEAs, but it happens
- These typically have a substantial impact on performance
- With speech recognition, these needs increase
 - training is ultra sensitive to small changes in audio characteristics
 - production systems are trained with wide variety of "augmentations", including background noise and babble, loud and quiet speech, frequency warping, etc.
 - "preprocessing" to normalize speech input decreases reliance on augmentation training and increases accuracy

Challenges

Stream alignment


 when merging intercepted streams, correct time alignment must be maintained between all endpoints

Crazy packet send rates

- slow, fast, variable. We've seen rates up to 15% slow/fast
- media playout servers are particularly bad offenders

ETSI encapsulated packet format

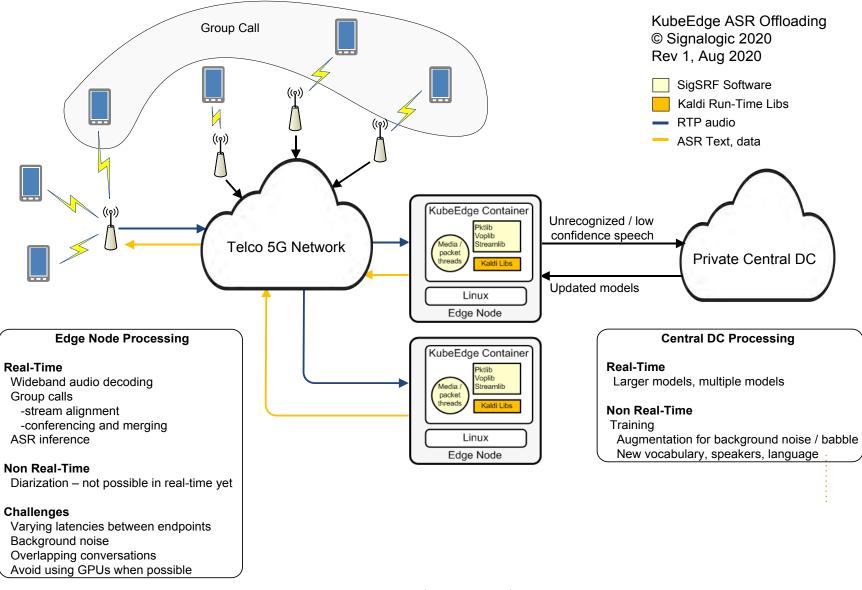
- intercept packet rate may be very different than original audio RTP packet rate

Multiple Wireshark captures showing stream merging of 3 intercepted endpoints

What's Coming

Edge Computing

- enabled by 5G performance, reduced latency
- decouple from big tech ("hyperscaler") cloud when needed -- e.g. privacy

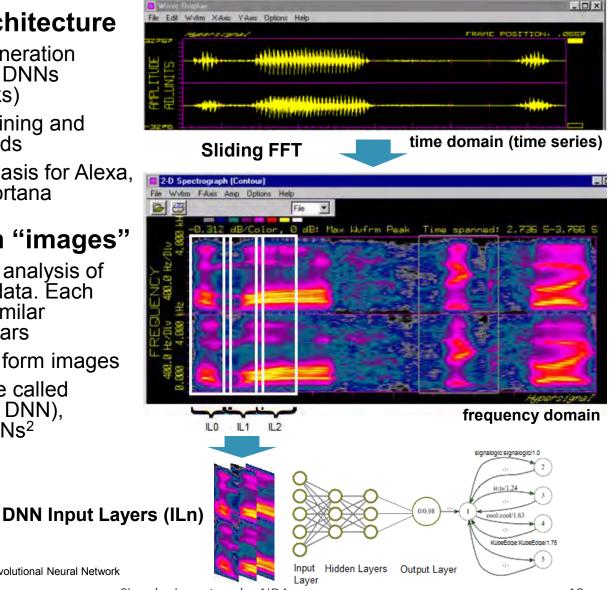

ASR (Automatic Speech Recognition)

- can be done in real-time, but substantially less capacity
- cannot yet be done in real-time: individual speaker identification and transcription, known as "diarization"
- potential to greatly reduce LEA workload, accurately alert on "conversations of interest"
- open source accuracy only a few % WER² above proprietary code bases

Containerization

- easier to scale and deploy
- allow CICD¹, for example improving ASR accuracy with "on the fly" training based on collected data

What's Coming: Edge Computing

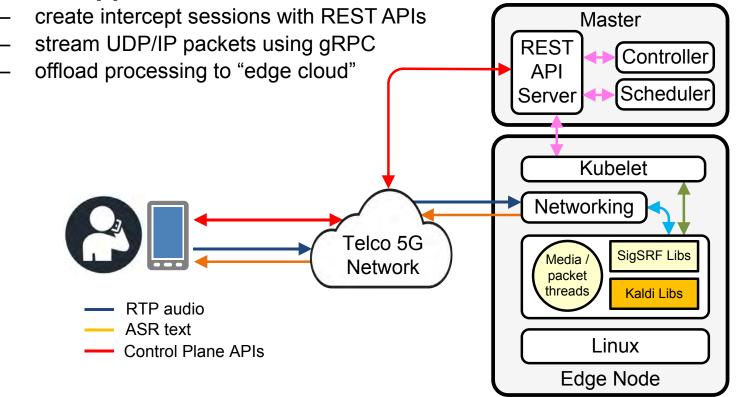

What's Coming: ASR

Deep Learning Architecture

- combines previous generation xMM¹ technology with DNNs (Deep Neural Networks)
- relies on extensive training and "augmentation" methods
- Kaldi open source is basis for Alexa, Google Home, and Cortana

Frequency domain "images"

- formed by sliding FFT analysis of incoming time series data. Each FFT frame output is similar to cochlea in human ears
- groups of FFT frames form images
- successive images are called "TDNN" (time delayed DNN), similar to series of CNNs²


Signalogic, not under NDA

What's Coming: Containers and Kubernetes

• Packet + media + ASR inside container

- minimum 2 x86 cores, 32 GB mem, 1 TB HDD can handle 32 sessions
- a session is wideband decode (e.g. EVS), jitter buffer, stream merging up to 8 stream groups, G711 pcap output, wideband wav file output
- scales up linearly with more cores

Field apps

Thanks !

- Questions or comments, e-mail me at jbrower (at) signalogic (dot) com
- For deployment references, possibly I can tell you under NDA, with customer permission
- If you need certain pcap test cases, possibly we can help. We have 100s, but we don't publish them
- If you have pcaps your system can't handle, or you suspect audio quality could be better, you can try our demo or send and let us try