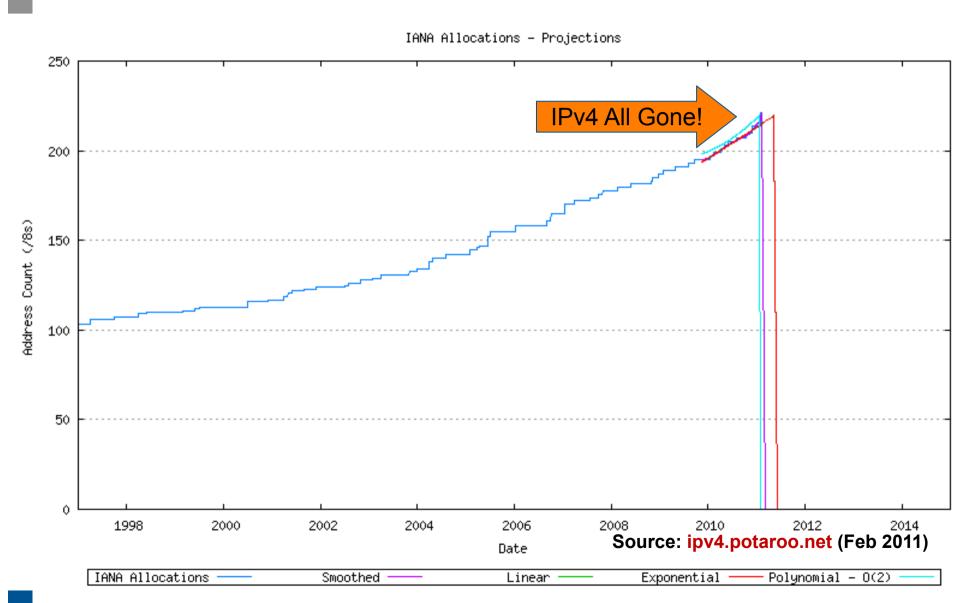
IPv6 Transition Strategies

Philip Smith
<philip@apnic.net>
 APRICOT 2013
 Singapore

19th Feb - 1st March 2013


Presentation Slides

- □ Will be available on
 - http://thyme.apnic.net/ftp/seminars/ APRICOT2013-IPv6-Transition.pdf
 - And on the APRICOT 2013 website
- □ Feel free to ask questions any time

Introduction

Why should we care?

"The times, They are a' changin"

Is IPv4 really running out?

- Yes!
 - IANA IPv4 free pool ran out on 3rd February 2011
 - RIR IPv4 free pool will run out soon after
 - www.potaroo.net/tools/ipv4/
 - (depends on RIR soft-landing policies)
- The runout gadgets and widgets are now watching when the RIR pools will run out:
 - inetcore.com/project/ipv4ec/index_en.html
 - ipv6.he.net/statistics/

Strategies available for Network Operators

Do nothing

- Wait and see what competitors do
- Business not growing, so don't care what happens

Extend life of IPv4

- Force customers to NAT
- Buy IPv4 address space on the marketplace

3. Deploy IPv6

- Dual-stack infrastructure
- IPv6 and NATed IPv4 for customers
- 6rd (Rapid Deploy) with native or NATed IPv4 for customers
- Or various other combinations of IPv6, IPv4 and NAT

Definition of Terms

Dual-Stack Networks

- Both IPv4 and IPv6 have been fully deployed across all the infrastructure
 - Routing protocols handle IPv4 and IPv6
 - Content, application, and services available on IPv4 and IPv6
- End-users use dual-stack network transparently:
 - If DNS returns IPv6 address for domain name query, IPv6 transport is used
 - If no IPv6 address returned, DNS is queried for IPv4 address, and IPv4 transport is used instead
- It is envisaged that the Internet will operate dualstack for many years to come

IP in IP Tunnels

- A mechanism whereby an IP packet from one address family is encapsulated in an IP packet from another address family
 - Enables the original packet to be transported over network of another address family
- Allows ISP to provide dual-stack service prior to completing infrastructure deployment
- Tunnelling techniques include:
 - IPinIP, GRE, 6to4, Teredo, ISATAP, 6rd, MPLS

Address Family Translation (AFT)

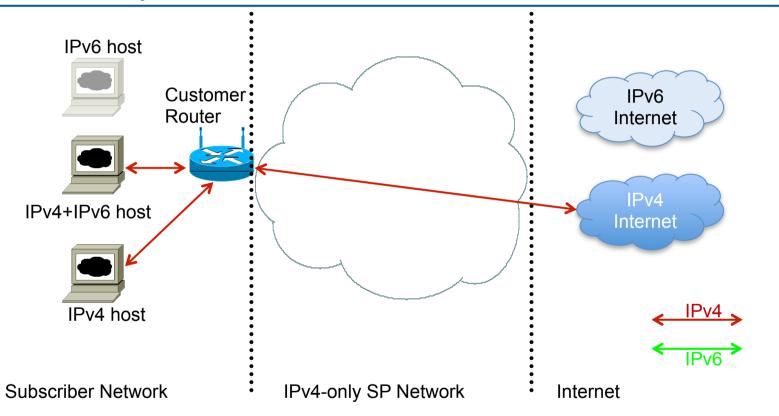
- Refers to translation of IP address from one address family into another address family
 - e.g. IPv6 to IPv4 translation (sometimes called NAT64)
 - Or IPv4 to IPv6 translation (sometimes called NAT46)

Network Address Translation (NAT)

- NAT is translation of one IP address into another IP address
- NAPT (Network Address & Port Translation) translates multiple IP addresses into one other IP address
 - TCP/UDP port distinguishes different packet flows
- NAT-PT (NAT Protocol Translation) is a particular technology which does protocol translation in addition to address translation
 - NAT-PT is now obsolete and replaced by NAT64

Carrier Grade NAT (CGN)

- Network Operator version of Subscriber NAT
 - Subscriber NAT can handle only hundreds of translations
 - Carrier Grade NAT can handle millions of translations
- Not limited to just translation within one address family, but does address family translation as well
- Often referred to as Large Scale NAT (LSN)


NAT Issues

- Breaks the end-to-end model of IP
- Breaks end-to-end network security
- Serious consequences for Lawful Intercept
- Non-NAT friendly applications means NAT has to be upgraded
- Some applications don't work through NATs
- Layered NAT devices
- Mandates that the network keeps the state of the connections
- How to scale NAT performance for large networks??
- Makes fast rerouting and multihoming difficult
- How to offer content from behind a NAT?

Strategy One

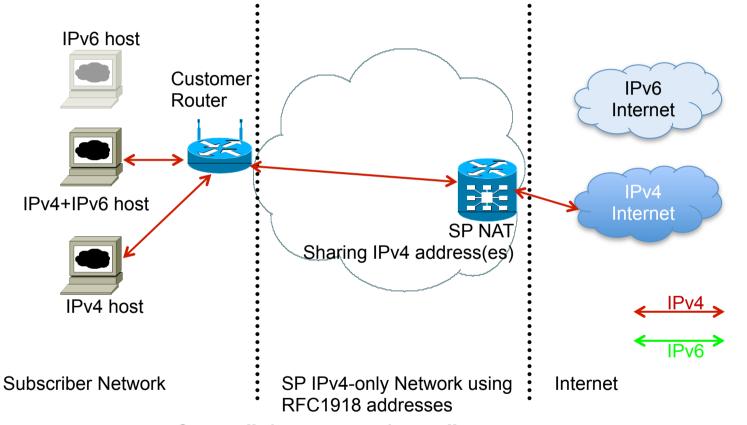
Do Nothing

IPv4 only Network

- The situation for many SPs today:
 - No IPv6 for consumer
 - IPv4 scaling lasts as long as IPv4 addresses are available

IPv4 only: Issues

- Advantages
 - Easiest and most cost effective short term strategy
- Disadvantages
 - Limited to IPv4 address availability (RIRs or marketplace)
 - No access to IPv6
 - Negative public perception of Network Operator as a laggard
 - Strategy will have to be reconsidered once IPv4 address space is no longer available


Strategy Two

Extend life of IPv4 network

Extending life of IPv4 Network

- Two ways of extending IPv4 network
 - Next step along from "Strategy One: Do nothing"
- Force customers to use NAT
 - Customers moved to RFC1918 address space
 - SP infrastructure moved to RFC6598 and/or RFC1918 address space where feasible
- Acquire IPv4 address space from another organisation
 - IPv4 subnet trading

SP NAT in IPv4-only network

- Next step on from "doing nothing":
 - SP introduces NAT in core when IPv4 addresses run out
 - No access to IPv6 Internet for IPv6 enabled hosts

SP NAT in IPv4-only network: Issues

Advantages

- ISPs can reclaim global IPv4 addresses from their customers, replacing with non-routable private addresses and NAT
- Allows continued IPv4 subscriber growth
- Disadvantages
 - SP needs a large NAT device in the aggregation or core layers
 - Has every well known technical drawback of NAT, including prevention of service deployment by customers
 - Double NAT highly likely (customer NAT as well as SP NAT)
 - Sharing IPv4 addresses could have behavioural, security and liability implications
 - Tracking association of port/address and subscriber, not to mention Lawful Intercept issues, are still under study
 - May postpone IPv6 deployment for a couple of years
 - Prevents subscribers from using IPv6 content, services and applications

IPv4 Subnet Trading

- Today the cost of getting IPv4 address space is low:
 - Service Provider:
 - □ RIR membership fee
 - Registration service fee (varies according to RIR service region)
 - End-sites usually receive IPv4 address block from SP as part of service
 - Many SPs already charge end-site for privilege of public IPv4 address
- In future when RIRs have no more IPv4 address space to distribute:
 - Cost of IPv4 addresses will be higher (today it's close to 0)
 - SPs may "purchase" IPv4 address space from other organisations

IPv4 Subnet Trading: Issues

Advantages

- Valuation of IPv4 addresses may hasten IPv6 adoption by encouraging sellers, perhaps more than offsetting costs to move some or all of their network to v6
- Receivers of transferred IPv4 address space can prolong their IPv4 networks

- Market may not materialise, so organisations hoping to benefit may not
- Depending on region, if RIR doesn't register transfer, there may be no routability
- Risk to integrity of routing system, as RIRs no longer authoritative for address records
- Even more rapid growth of routing system
- Financial pressure on ISPs to dispose of IPv4 addresses they still need

Strategy Three

IPv4/v6 Coexistence/Transition techniques

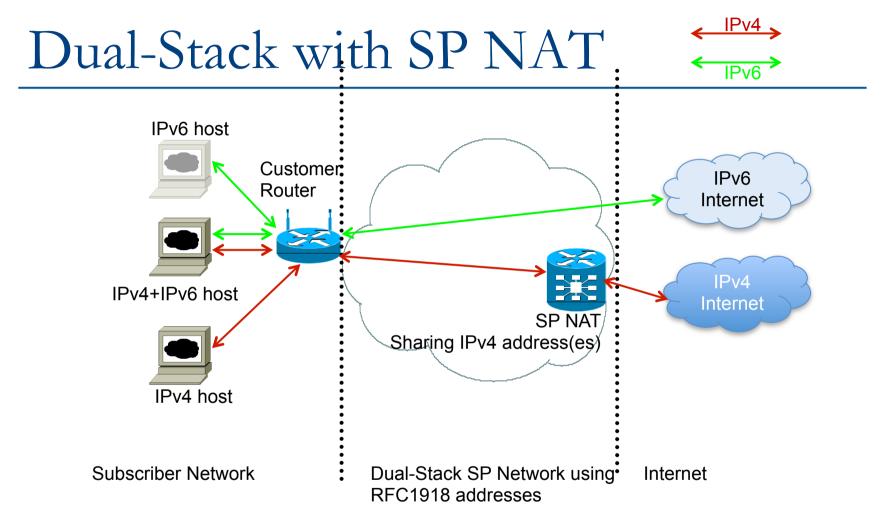
IPv4/IPv6 coexistence & transition

- Three strategies for IPv6 transition:
 - Dual Stack Network
 - The original strategy
 - Depends on sufficient IPv4 being available
 - 6rd (Rapid Deploy)
 - □ Improvement on 6to4 for SP customer deployment
 - Large Scale NAT (LSN)
 - SP deploys large NAT boxes to do address and/or protocol translation
- The three strategies are now to some extent interdependent

IPv4/IPv6 coexistence & transition

- □ Large Scale NAT (LSN)
 - NAT444/SP NAT
 - □ NAT to customer, optionally NAT'ed core.
 - Dual-Stack Lite
 - Private IPv4 to IPv6 to Public IPv4
 - NAT64 & NAT46
 - Translation between IPv6 and IPv4

Dual-Stack Network IPv6 host **Customer** IPv6 Router Internet IPv4 IPv4+IPv6 host Internet IPv4 host Subscriber Network **Dual-Stack SP Network** Internet

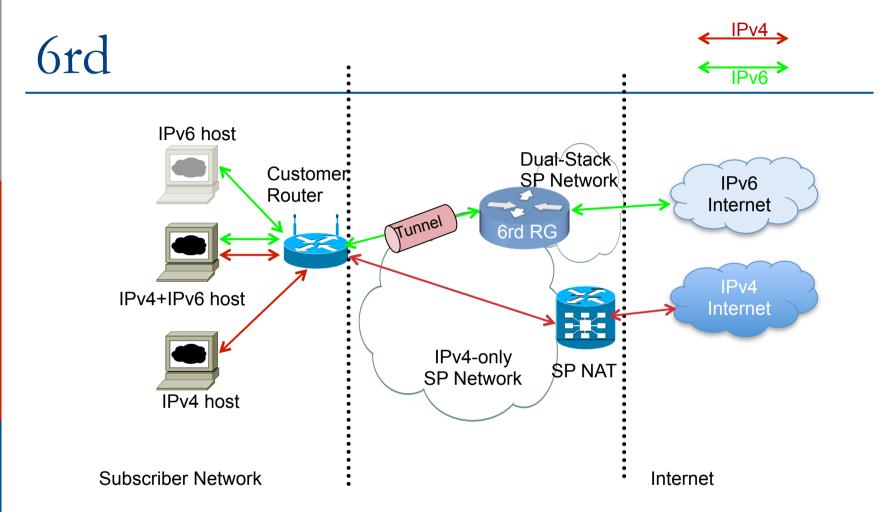

- The original transition scenario, but dependent on:
 - IPv6 being available all the way to the consumer
 - Sufficient IPv4 address space for the consumer and SP core

Dual-Stack Network: Issues

Advantages

- Most cost effective long term model
- Once services are on IPv6, IPv4 can simply be discontinued

- IPv4 growth limited to available IPv4 address space
- Running dual-stack network requires extra staff training
- IPv6 on existing IPv4 infrastructure might cost extra in terms of hardware changes (RIB and FIB memories)
- IPv6-only end-points cannot access IPv4, but given most IPv6 end-points are dual-stack, require IPv4 address too

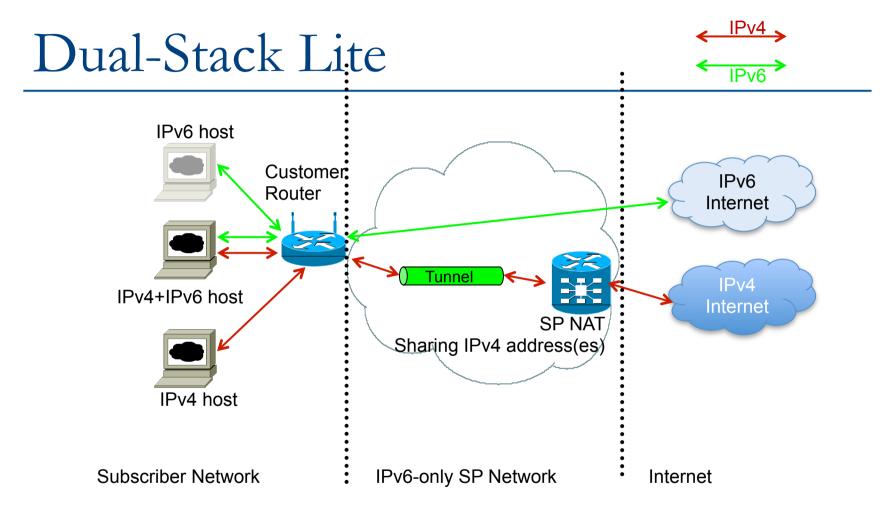

- More likely scenario:
 - IPv6 being available all the way to the consumer
 - SP core and customer has to use IPv4 NAT due to v4 depletion

Dual-Stack with SP NAT: Issues

Advantages

- ISPs can reclaim global IPv4 addresses from their customers, replacing with non-routable private addresses and NAT
- Allows continued IPv4 subscriber growth and provide IPv6 connectivity
- Does not postpone IPv6 deployment

- SP needs a large NAT device in the aggregation or core layers
- Has every well known technical drawback of NAT
- Double NAT highly likely (customer & SP NAT)
- Sharing IPv4 addresses could have behavioural, security and liability implications
- Tracking association of port/address and subscriber, not to mention Lawful Intercept issues, are still under study
- SP incurs additional investment and operational expenditure by deploying an IPv6 infrastructure

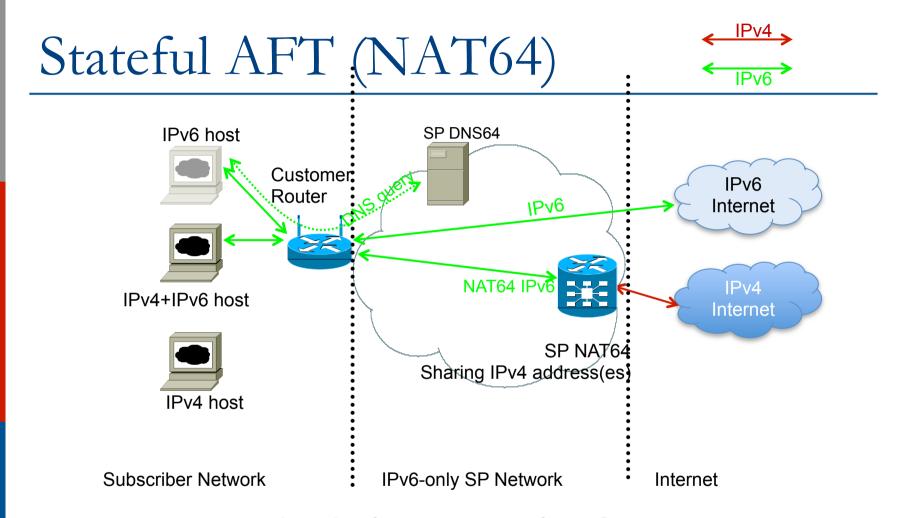

- 6rd (Rapid Deploy) used where SP infrastructure to customer is not IPv6 capable (eg IPv4-only BRAS)
 - Customer has IPv4 Internet access either natively or via NAT
 - Customer IPv6 address space based on SP IPv4 block

6rd: Issues

Advantages

- The service provider has a relatively quick way of providing IPv6 to their customer without deploying IPv6 across their infrastructure
- Subscribers can readily get access to IPv6
- 6rd relay and CPE are becoming available from vendors
- 6rd operation is completely stateless, does not have the operational drawbacks of 6to4, and does not postpone IPv6 deployment

- 6rd is not a long-term solution for transitioning to IPv6 one further transition step to remove the tunnels
- CPE needs to be upgraded to support 6rd
- The ISP has to deploy one or several 6rd termination devices
- If customer or SP uses NAT for IPv4, all NAT disadvantages are inherited


- Service Provider deploys IPv6-only infrastructure:
 - IPv6 being available all the way to the consumer
 - IPv4 is tunnelled through IPv6 core to Internet via SP NAT device

Dual-Stack Lite: Issues

Advantages

- The SP is using IPv6 across their entire infrastructure, avoiding the IPv4 address pool depletion issue totally
- The SP can scale their infrastructure without any IPv4 dependencies
- Consumers can transition from IPv4 to IPv6 without being aware of any differences in the protocols
- IPv6 packets routed natively

- SP requires NAT device in core supporting DS-Lite
- Subscriber router needs to be IPv6 capable
- Model has all drawbacks SP NAT Dual Stack model for IPv4 traffic

- Service Provider deploys IPv6-only infrastructure:
 - Only IPv6 is available to the consumer
 - IPv4 Internet available via Address Family Translation on SP NAT device

Stateful AFT (NAT64) Details SP DNS64 IPv6 host 2. A RR? 1. AAAA RR? 3. A RR **DNS** 4. Synthetic AAAA RR IPv4+IPv6 host Customer Router Internet SP NAT64 Sharing IPv4 address(es) IPv4 host

IPv6-only SP Network

Subscriber Network

35

Internet

Stateful AFT: Issues

Advantages

- Allows IPv6 only consumers access to IPv4 based content without giving them IPv4 address resources
- IPv6 services and applications offered natively to consumers
- SP network runs IPv6 only, avoiding IPv4 dependencies

- SP requires NAT device in core
- SP's DNS infrastructure needs to be modified to support NAT64
- Subscriber router needs to be IPv6 capable
- Subscriber devices need to be IPv6 capable (no legacy support)
- Model has all drawbacks of SP NAT model for IPv4 traffic

Conclusions

Summary (1)

- Have covered most likely transition techniques
- □ Not covered:
 - Tunnels (GRE, 6in4, MPLS)
 - 6to4 operational reliability?
 - IVI limited availability?
 - Teredo security issues?
 - ISATAP security issues?
 - LISP limited availability?
 - A+P limited availability?

Summary (2)

- □ Functional and Operational Issues
 - How should a Network Operator choose what to do?
- Potential Scenarios
 - How will a Network Operator continue growing their operations?
- Recommendations
 - What should a Network Operator do?

Functionalities and Operational Issues

- Complexity of operation:
 - Moderate in the case of a single network with two address families
- Complexity of troubleshooting:
 - Running two address families and/or tunnels is assumed to be more complex
- Breaks end-to-end connectivity in IPv4:
 - Subscribers sharing a CGN will have little to no hurdles in their communication
 - Subscribers separated by one or several CGN will experience some application issues

Conclusions Potential Scenarios

- Most of the content and applications move to IPv6 only;
- Most of the content and applications are offered for IPv4 and IPv6;
- Most of the users move to IPv6 only
 - Especially mobile operators offering LTE handsets in emerging countries
- No change (the contents/applications stay IPv4 and absence of pro-IPv6 regulation), SP customer expectations devolve to double-NAT;
- No change (the contents/applications stay IPv4) but SP customer expectations do not devolve to double-NAT (or they are ready to pay for peer-to-peer connectivity).
 - Perhaps well established broadband markets like US or Europe

Recommendations

- Start deploying IPv6 as long term strategy
- Evaluate current addressing usage to understand if IPv4 to IPv4 NAT is sufficient for transition period
- 3. Prepare a translation mechanism from the IPv4 Internet to the IPv6 Internet
- Educate your user base on IPv6 introduction, the use cases and troubleshooting

Conclusions & Recommendations

Functionalities and Operational Issues

	IPv4 only network	Dual-Stack, no SP NAT	SP IPv4-NAT & IPv4-only network	SP IPv4-NAT & Dual-Stack network	6rd	6rd with IPv4- NAT	DS-Lite	Stateful AFT
Prolongs IPv4	No	No	Yes	Yes	No	Yes	Yes	Yes
Allows Business Growth	No	Limited to IPv4 address availability	Yes (scaling issues if content is mostly IPv6)	Yes (traffic to IPv4-only servers)	Limited to IPv4 address availability	Yes	Yes	Yes
Requires IPv6 Deployment	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Coexists with IPv6 Deployment	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Complexity of Operation	Low	Low	Low	Moderate	Moderate	Moderate	Moderate	Moderate
Complexity of Troubleshooting	Low	Low	Moderate	High	Moderate	High	High	Moderate
Breaks End-to-End IPv4	No	No	Yes	Yes	No	Yes	Yes	N/A
NAT Scalability issues to IPv4 services	No	No	Yes	Yes	No	Yes	Yes	Yes
NAT Scalability issues to IPv6 services	N/A	No	Yes	No	No	No	No	No
DNSSEC issues	No	No	Yes	Yes for IPv4 No for IPv6	No	Yes for IPv6 No for IPv4	Yes for IPv4 No for IPv6	Yes for IPv4 No for IPv6
Lawful Intercept issues	No	No	Yes	Yes for IPv4	No	Yes for IPv4	Yes for IPv4	Yes for IPv4

Functionalities and Operational Issues

- Complexity of operation:
 - Moderate in the case of a single network with two address families
- Complexity of troubleshooting:
 - Running two address families and/or tunnels is assumed to be more complex
- Breaks end-to-end connectivity in IPv4:
 - Subscribers sharing a CGN will have little to no hurdles in their communication
 - Subscribers separated by one or several CGN will experience some application issues

Comparing where changes will occur

	IPv4 only network	Dual- Stack, no SP NAT	SP IPv4- NAT & IPv4-only network	SP IPv4- NAT & Dual- Stack network	6rd	6rd with IPv4-NAT	DS-Lite	Stateful AFT
Change CPE	No	Only if customer wants IPv6	No	Only if customer wants IPv6	Yes	Yes	Yes	Yes
CPE to do AFT to access IPv6	No	No	No	No	No	No	No	No
NAT in core/edge	No	No	Yes	Yes	No	Yes	Yes	No
AFT in core/edge to access IPv6	Yes	No	Yes	No	No	No	No	Yes

Conclusions Potential Scenarios

- Most of the content and applications move to IPv6 only;
- Most of the content and applications are offered for IPv4 and IPv6;
- Most of the users move to IPv6 only
 - Especially mobile operators offering LTE handsets in emerging countries
- No change (the contents/applications stay IPv4 and absence of pro-IPv6 regulation), SP customer expectations devolve to double-NAT;
- No change (the contents/applications stay IPv4) but SP customer expectations do not devolve to double-NAT (or they are ready to pay for peer-to-peer connectivity).
 - Perhaps well established broadband markets like US or Europe

Conclusions Potential Techniques

Scenario	Potential Techniques			
Content and Applications move to IPv6	IPv6 only network; Dual-Stack, 6rd and DS-lite as migration techniques			
Content and Applications on IPv4 and IPv6	Dual-Stack (if enough IPv4) or 6rd; SP IPv4-NAT; DS-lite (for greenfield) *			
Users are IPv6 only	Stateful/Stateless AFT to get to IPv4 content *			
No change (double NAT)	SP IPv4-NAT *			
No change (no double NAT)	Do nothing *			

^{*} Transfer Market applicable

Recommendations

- Start deploying IPv6 as long term strategy
- Evaluate current addressing usage to understand if IPv4 to IPv4 NAT is sufficient for transition period
- 3. Prepare a translation mechanism from the IPv4 Internet to the IPv6 Internet
- Educate your user base on IPv6 introduction, the use cases and troubleshooting