

# Policy Development Framework for Government IPv6 Deployment

Kenny Huang, Ph.D. Board, TWNIC; AC ASO huangk@mindext.com



#### **Options/Solutions for IPv4 Exhaustion** IPv6 excluded

- s1 CGN (Carrier Grade NAT)
  - Increase CapEx, reduce network quality
- s2 Transfer/Reclamation IPv4
  - C1: Cost of IPv4 ownership/right to use
  - C2: Renumber
  - C3: H/W S/W cost
- r1: exclusive
  - IPv6 is the only practical and readily resource after IPv4 exhaustion

#### implication to private/public sector for alternative solutions

- Implication to private sector
  - s1/s2 are all feasible solutions to private sectors.
     Corporate chooses solution based on its existing requirements
- Implication to public sector
  - Beyond s1/s2, public sector has to provide a feasible mechanism for r1 (IPv6)
  - Public section should consider IPv6 deployment is necessary but not sufficient requirement
    - In addition to deploy IPv6 (must), public sector can also choose s1/s2 based on its own requirements

## Timing

- IPv4 exhaustion
  - IANA IPv4 exhausted in 2011 Feb
  - APNIC IPv4 exhausted in 2011 Aug
  - IPv6 is the only practical and readily resource
- Government IPv6 deployment in other countries
  - Several countries already launched government
     IPv6 plan





# **Activation Time**

- Activation Time
  - Pure IPv6 ISP, IPv6 users can't access IPv4
     Government networks and websites
  - Act Now
    - Government should issue a position statement in support IPv6 deployment now

#### Cost variables for IPv6 deployment

- One time or phased deployment
- Coverage ?
- How long
- Indirect cost (Training, Security, Service Quality)
- Economical solution
  - Dynamic provisioning
    - Server system : hosting, or enable dualstack in legacy systems

COST

Network traffic: Rate limiting

# **Taiwan Trade vs. IPv6 Allocation**

IP

|    | Taiwan Trade with<br>Partners, Jan<br>2010 – Oct 2010 | Share of<br>Total<br>Exports | Share of<br>Total<br>Imports | Share of<br>IPv6 /48s<br>Allocated to<br>Date | Share of<br>IPv6 /48s<br>Allocated<br>Per Capita |
|----|-------------------------------------------------------|------------------------------|------------------------------|-----------------------------------------------|--------------------------------------------------|
| 1  | CHINA                                                 | 28.129%                      | 14.105%                      | 0.28%                                         | 0.063                                            |
| 2  | JAPAN                                                 | 6.64%                        | 20.916%                      | 7.46%                                         | 7.195                                            |
| 3  | UNITED STATES                                         | 11.395%                      | 9.962%                       | 10.68%                                        | 4.234                                            |
| 4  | HONG KONG                                             | 13.868%                      | 0.653%                       | 0.03%                                         | 0.657                                            |
| 5  | KOREA                                                 | 3.9%                         | 6.387%                       | 3.57%                                         | 8.643                                            |
| 6  | SINGAPORE                                             | 4.45%                        | 3.102%                       | 0.03%                                         | 0.785                                            |
| 7  | GERMANY                                               | 2.352%                       | 3.258%                       | 7.18%                                         | 10.546                                           |
| 8  | MALAYSIA                                              | 2.164%                       | 3.097%                       | 0.03%                                         | 0.15                                             |
| 9  | SAUDIARABIA                                           | 0.367%                       | 4.735%                       | 0.01%                                         | 0.105                                            |
| 10 | AUSTRALIA                                             | 1.156%                       | 3.62%                        | 5.57%                                         | 31.669                                           |
|    | Total                                                 | 74.42%                       | 69.84%                       | 34.84%                                        | 64.047                                           |
|    | TAIWAN                                                | n/a                          | n/a                          | 1.59%                                         | 9.418<br>10                                      |

# **Cost: Number Please**

- Lack of Generalizability
  - IPv6 readiness varied among Gov agencies, thus transition cost are different
- Financial risk
  - Can't have precise financial measurement
  - Financial risk can be limited within an acceptable range through sizing/scoping IPv6 deployment
- Non-financial risk
  - Apply the existing IT practice /guideline to manage non-financial risk. Such as ITIL standards, Information Security ISO27000 series, or USG IT Enterprise Architecture

#### **Initial Sizing**

- DNS Capacity (IPv6 gov.tw)
  - v6 enable: activating dualstack in DNS and adding AAAA RR
  - expansion: no capacity expansion
  - connection : access IPv6 network or IPv6 colocation
- WWW Capacity
  - V6 enable: activating dualstack in the existing systems
  - expansion: existing WWW capacity x 3%-5%
  - connection : access IPv6 network or IPv6 colocation
- Network Capacity
  - V6 enable : activating dualstack in routers
  - expansion: existing bandwidth x3%-5%
  - Transit: purchase IPv6 Transit
  - Peering: deploy Layer2 switch for IPv6 public internet exchange (6PIX).

#### **Priority Matrix**



## **Non-financial Risk**

#### Issue List 1 v6/v4 fallback

IP



#### **2 DNS query increase**

|                                              | FeeBSD       | Linux                  | MacOS        | Vista   |
|----------------------------------------------|--------------|------------------------|--------------|---------|
| A & AAAA<br>query sequence order             | A first      | AAAA first             | A first      | A first |
| When does domain<br>name completion<br>occur | After A+AAAA | All AAAA<br>completion | Alter A+AAAA |         |

#### Continue

#### **3 Operational practice/technology takes time**

|        | Idea | Current |
|--------|------|---------|
| IP     | 1969 | 1981    |
| ТСР    | 1974 | 1981    |
| Telnet | 1969 | 1983    |
| IDN    | 1998 | 2004    |
| IPv6   | 1994 | 1998    |

#### 4 Cost of management for long term overlapping period



doubles number of service interfaces
requires changes above & below
major interoperability issues

# Gain & Loss

**Every action has a price and pleasure** 

# **Perceived Gain**

- 1. Meet pure IPv6 users/operators needs
- 2. Potential address needs: mobile-Internet, Internet of Things
- 3. Sustain ICT competitiveness

# Perceived Loss

- Financial risk: cost of deployment (ref: initial sizing)
- 2. Nonfinancial risk: service quality (ref. Issue List)
- 3. Future management cost (IPv4 Post-Transition)

# Value Assessment

IP

| ltem                                                | Necessity | Perceived Value                                                                                               |
|-----------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------|
| A External<br>Services                              | 1         | Complied with Telecom Act.                                                                                    |
| WWW, DNS, Email<br>Transit/Peering<br>Backbone, IX  | MUST      | s20: universal access right to all citizen<br>s21: fair connection service<br>s22: undeniable interconnection |
| B Connectivity<br>Expansion                         |           | Complied with Telecom Act.                                                                                    |
| Access Networks                                     | MUST      | s20: universal access right to all citizen<br>s21: fair connection service<br>s22: undeniable interconnection |
| C Internal Use & All IPv6                           | 1         |                                                                                                               |
| Internal Services,<br>Database, Desktop<br>H/W, S/W | MAY       | Only if IPv6 demonstrate its market momentum with positive externality at this stage                          |
|                                                     |           | 17                                                                                                            |

|                  |                           | Pro                           | oosec                           | Schedule                    |                                                     |
|------------------|---------------------------|-------------------------------|---------------------------------|-----------------------------|-----------------------------------------------------|
| <b>0</b>         | Position<br>Statement     | A Exte                        | ernal<br>vices                  | B Connectivity<br>Expansion | C Internal Use & All IPv6                           |
| Go<br>Offic      | overnment<br>cial Support | WWW, DI<br>Transit/<br>Backbo | NS, Email<br>Peering<br>one, IX | Access Networks             | Internal Services,<br>Database, Desktop<br>H/W, S/W |
| 1                | To                        | Т                             | а                               | Tb                          | Тс                                                  |
|                  | Proposed                  | schedule                      | Reason                          |                             | Remark                                              |
| To Now           |                           | Ref : Activation Time         |                                 | Must                        |                                                     |
| <b>Ta T0+2 Y</b> |                           | 12M after IPv4 exhaustion     |                                 | Must                        |                                                     |
| Tb T0+4Y         |                           | Ref other                     | Ref other country policy        |                             |                                                     |
| Тс               | T0+4Y                     |                               | Ref other                       | country policy              | Adjusted by budget 18                               |

#### **Policy defined, It is just the beginning**

#### IPv6 is not "plug and play"

Standards/mandatory ? Infrastructure readiness ? Transit/peering ? Addressing ? Dual-stack/tunnelling ? v6 Routing protocols? Security? Cost?





# IPVO

# **IT Maturity Model**

|   | Understanding<br>and Awareness                | Training and<br>Communication                                                                            | Process and<br>Practice                                                                                                           | Techniques and<br>Automation                                                                            | Compliance                                                                                                                    | Expertise                                                          |
|---|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1 | Recognition                                   | Sporadic<br>communication on<br>issues                                                                   | Ad hoc approach to<br>process and practice                                                                                        |                                                                                                         |                                                                                                                               |                                                                    |
| 2 | Awareness                                     | Communication on the overall issue and needs                                                             | Similar but intuitive process emerges                                                                                             | Common tools are<br>appearing                                                                           | Inconsistent<br>monitoring on<br>isolated issues                                                                              |                                                                    |
| 3 | Understanding of need to act                  | Informal training<br>supports individual<br>initiatives                                                  | Practices are defined,<br>standardized and<br>documented; sharing<br>of better practices<br>begins                                | Tool set is<br>standardized; currently<br>available practices are<br>used and enforced                  | Inconsistent<br>monitoring;<br>measurement<br>emerges; balanced<br>score card adopted;<br>root cause analysis<br>is intuitive | Involvement of IT<br>specialists in<br>business<br>processes       |
| 4 | Understand full requirements                  | Formal training<br>supports a managed<br>program                                                         | Process ownership<br>and responsibilities<br>are set; process is<br>sound and complete;<br>internal best practices<br>are applied | Mature techniques are<br>used; standard tools<br>are enforced; limited<br>tactical use of<br>technology | Balanced scorecard<br>are used in some<br>areas; root cause<br>analysis is<br>standardized                                    | Involvement of all<br>internal domain<br>experts                   |
| 5 | Advanced.<br>Forward-looking<br>understanding | Training and<br>communications<br>support external best<br>practices and use<br>leading edge<br>concepts | Best external<br>practices are applied                                                                                            | Sophisticated<br>techniques are<br>deployed; extensive<br>optimized use of<br>technology                | Balanced scorecard<br>is globally applied;<br>root cause analysis<br>is always applied                                        | Use of external<br>experts and<br>industry leaders<br>for guidance |







# **IPv6 Inventory Assessment**

#### IPv6 Inventory Assessment

Discover and document infrastructure readiness

ltem

Cost impacts of transition to IPv6

Inventory IP elements to understand the ability to support IPv6

Align element mapping to refresh cycles

Understand vendor and carrier dual stack roadmap







24



#### **Strategic Policy for IPv6 Deployment**

IP.

#### 2. Constituent Service 1. Political Return P1 policy Position statement for Training and awareness C1 increase **IPv6** deployment IPv6 product certification making value technology P2 Greater C2 reduce RIR policy development Industrial innovative Act: Tax participation Credit cost P3. Risk IPv4 exhaustion C3 single POC IPv6 transition office management P4. Economic C4 service Government network • Reduce risk of ISP/ICP availability dualstack impact **3** Operation Efficiency Technology Feasibility O1 service Government IPv6 transform deployment Operation Economy • Business / service O2 Policy Goal continuity 05 complied with Telecom Legal Government Act sponsibility

# **Policy Value Assessment**

IPV

|                               | Current State        | Intended State                 | Project<br>Component        |
|-------------------------------|----------------------|--------------------------------|-----------------------------|
| Political Return              |                      |                                |                             |
| Policy making                 |                      | Clear IPv6 Strategy            | Position Statement          |
| Greater participation         | RIR participation    | RIR participation              |                             |
| Crisis management             | IPv4 exhaustion      | Minimal impact                 | IPv6 Transition             |
| Constituent Service           |                      |                                |                             |
| Constituent value             |                      | Certification/tech transfer    | IPv6 Tech Support Center    |
| Lower constituent cost        |                      | Lower cost for ISPs            | Industrial innovation act   |
| Single point of contact       |                      | Single POC                     | IPv6 Transition Office      |
| Greater service availability  | IPv4 only            | IPv4/IP6 availability          | GSN dualstack deployment    |
| <b>Operational Efficiency</b> |                      |                                |                             |
| Service Transformation        | Ad hoc               | Best practice                  | Phased IPv6 transition plan |
| Policy objectives             | Service availability | Sustained service availability | Secure IPv6 migration       |
| Gov responsibility            |                      | Complied with Telecom Act      | IPv6 transition plan        |

#### **IPv6 Policy Deliveries**





# THANK YOU

#### Reference

- 1. Geoff Huston. 2010. IPv4 Address Report. Retrieved 5 May 2010, from http://www.potaroo.net/tools/IPv4/
- 2. Geoff Huston. 2010. Measuring more IPv6. The ISP Column. April 2010
- 3. Geoff Huston, Kenny Huang. 2010. Economic Considerations for IPv6 Transition. IPv6 Economics and Implementation Workshop, Kuala Lumpur. 2 March 2010
- 4. JPNIC. 2008. Report on Study Group on Internet Smooth Transition to IPv6.
- 5. JPNIC. 2009. Action Plan and Milestone Toward IPv4 Address Exhaustion. October 5 2009.
- 6. Kahn, Herman, and Anthony J. Wiener. 1967. The Next Thirty-Three Years: A Framework for Speculation. Daedalus963 (1967):705-32
- NIST (National Institute of Standards and Technology). 2010. Guidelines for Secure Deployment of IPv6. Special publication 800-119. Feb 2010
- NRO.2010. Less than 10% of IPv4 Addresses Remain Unallocated. Number Resource Organization. Retrieved 05 May 2010, from http://www.nro.net/media/less-than-10-percent-IPv4-addresses-remainunallocated.html
- 9. RFC2185 (Routing Aspects of IPv6 Transition)
- 10. RFC3142(An IPv6-to-IPv4 Transport Relay Translator)
- 11. RFC3053 (IPv6 Tunnel Broker)
- 12. RFC3056(Connection of IPv6 Domains via IPv4 Clouds)
- 13. RFC4213(Basic Transition Mechanisms for IPv6 Hosts and Routers)
- 14. RFC4214(Intra-Site Automatic Tunnel Addressing Protocol ISATAP)
- 15. RFC4380(Teredo:Tunneling IPv6 over UDP through Network Address Translations NATs)
- 16. RFC4966(Reasons to Move the Network Address Translator-Protocol Translator NAT-PT to Historic Status)
- 17. RFC5211(An Internet Transition Plan)
- 18. RFC5569(IPv6 Rapid Deployment on IPv4 Infrastructures (6rd))
- 19. RFC5572(IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP))
- 20. US Government. 2002. "eGovernment Strategy", Feb 27 2002.
- 21. 曾憲雄(2010).政府網路及e政府網站導入IPv6參考要點,新一代網際網路協定互通認證計畫