BBN Relying Party Software for
the RPKI

Dr. Stephen T. Kent

BB N

TECHNOLOGIES

Relying Party Software Key Features (1/2)

Local database of digitally certificates, CRLs, and
RPKI signed objects

* Fast cache of verified, immutable object values

* Each file 1n the local repository (cache) is read and
parsed only once

» Straightforward, robust method for maintaining
persistent state

Efficient mechanism for handling certificates,
CRLs, ROAs, manifests, and trust anchor objects

* Almost complete implementation of local trust anchor
support

Relying Party Software Key Features (2/2)

 Standards compliant (SIDR and PKIX), open
source, multi-platform (some versions of Linux,
FreeBSD, and OpenBSD, more later, incl. OS X)

* Automated background processing of object
revocation and expiration

* Incremental, deferred validation of signed objects,
tailored so that these objects can arrive i any order

+ Database maintains state so that expensive operations
like signature verification and hash computation are

performed only once

Retrieval
Log

URI Chaser

Finds new publication
points for certs, CRL’s,

ROA’s, etc.

Outputs

AS-IP map
RPSL

AS-IP map
RTR protocol

Query Client

A

4

RTR server

Cache

RPKI
)atabas

Local File

Commands:
add/remove

Log Parser
(rsync_aur)

Trust Anchor
manual config

\ 4

DB Updater (rcli)
Validates, adds, and
removes certs, CRL’s,
etc. Propagates state.

DB Garbage Collector

Time-related state changes.

Remote Synchronization

* Synchronization is built on rsync
* Static configuration file of remote repositories
* Dynamic configuration file of CRLDPs generated by the
“chaser” component

« All actions logged

* Local repository (file system) 1s updated based on
rsync actions

* Software also maintains certain protected
directories that rsync does not touch

 Extracted versions of embedded EE certificates
« Backup copy of manifest for each directory
 Trust anchors (global and local)

* Run as a cron job; can also be run manually

Database Intake

* Triggered by rsync completion

* Parses rsync log file and performs indicated
actions

» Performs syntactic validation of all objects before
they are entered into the database

* Embedded EE certificates in ROAs and manifests
are extracted and handled independently
 Linked to the original object in the DB

* Trust anchors are added out of band

Database Structure

* One table for each type of object

* Adding objects triggers object-specific actions
* Adding a certificate triggers path discovery
* Adding a CRL revokes all the certificates in the DB named by that
CRL
* Software “glue” layer abstracts table layout so that changes
in DB structure (e.g., recent addition of support for CTA)
are 1solated to a small set of interfaces written in C

« DB locking 1s used to prevent collisions between
asynchronous software components

* DB presents an external interface that implements the RTR
protocol

» Highly tuned and optimized for optimal performance

URI Chaser

* Scans for CRLDPs (certificate extension)

» Compacts the list of CRLDPs to a minimal subset

* Reduced to smallest set that fetches from all CRL
publication points in order to minimize network traffic

» Updates rsync’s dynamic configuration file

* An asynchronous process

RPSL Output Generation

Database query client extracts a raw set of
“plausibly valid” ROAs

Applies user-configurable filters
» Stale CRL OK?
* Stale Manifest OK?
* Expired certificate in path OK?
* Superseded manifest OK?

All filters have default settings based on our
understanding of most likely use case

Generates RPSL based on filtered output
Can be run synchronously or asynchronously

Can also be used to perform generalized database
queries without a user needing to learn SQL

10

Router Protocol Support

Newly proposed protocol (draft-ietf-sidr-rpki-
rtr-01) for communication between an RPKI server

and a router (within an AS)
The protocol assumes a server that

* Fetches certificates, CRLs, and signed objects from the
RPKI repository system

* Processes these objects to maintain a local cache

* Sends messages to routers to notify of cache updates,
and replies to queries with <prefix, ASN list

The RP software provides a suitable server cache

11

Current System Performance

Tested the system using simulated repository data
generated from RIR “profiles”
. 9,932 CA certificates
13,292 EE (embedded) certificates
6,646 CRLs
6,646 ROAs

6,646 manifests
43,162 objects 1n all => 47 minutes 26 seconds

Whole Internet deployment (~300,000 objects)
=> ~ 5.6 hours (one time cost of 1nitializing DB)

Typical daily update (3,000 objects) => less
than five minutes

We’re working to improve these numbers
12

Planned Software Enhancements

Complete local trust anchor management, as
defined 1n draft-reynolds-rpki-ltamgmt-00.tx

Complete port to Mac OS X, FreeBSD (7),
OpenBSD

Track SIDR decision on trust anchor configuration,
and support accordingly

Support new RPKI signed objects as they are
defined, e.g., the “Ghost Buster” record

Enable parallel rsync fetches, back off and retry

Improve performance, fix bugs, ...

13

Questions?

14

