
BBN Relying Party Software for
the RPKI

Dr. Stephen T. Kent

Relying Party Software Key Features (1/2)

•  Local database of digitally certificates, CRLs, and
RPKI signed objects
•  Fast cache of verified, immutable object values

•  Each file in the local repository (cache) is read and
parsed only once

•  Straightforward, robust method for maintaining
persistent state

•  Efficient mechanism for handling certificates,
CRLs, ROAs, manifests, and trust anchor objects
•  Almost complete implementation of local trust anchor

support 2

Relying Party Software Key Features (2/2)

•  Standards compliant (SIDR and PKIX), open
source, multi-platform (some versions of Linux,
FreeBSD, and OpenBSD, more later, incl. OS X)

•  Automated background processing of object
revocation and expiration

•  Incremental, deferred validation of signed objects,
tailored so that these objects can arrive in any order
•  Database maintains state so that expensive operations

like signature verification and hash computation are
performed only once

3

Repositorie
s

rsync

Log Parser
(rsync_aur)

DB Updater (rcli)
Validates, adds, and

removes certs, CRL’s,
etc. Propagates state.

DB Garbage Collector
Time-related state changes.

URI Chaser
Finds new publication
points for certs, CRL’s,

ROA’s, etc.

Query Client

RTR server

Retrieval
Log

Local File
Cache

Local URI
List

Inputs

AS-IP map
RPSL

AS-IP map
RTR protocol

Outputs

Commands:
add/remove

RPKI
Database

Manual URIs

Trust Anchor
manual config

4

Remote Synchronization
•  Synchronization is built on rsync

•  Static configuration file of remote repositories
•  Dynamic configuration file of CRLDPs generated by the

“chaser” component

•  All actions logged
•  Local repository (file system) is updated based on

rsync actions
•  Software also maintains certain protected

directories that rsync does not touch
•  Extracted versions of embedded EE certificates
•  Backup copy of manifest for each directory
•  Trust anchors (global and local)

•  Run as a cron job; can also be run manually 5

Database Intake
•  Triggered by rsync completion
•  Parses rsync log file and performs indicated

actions
•  Performs syntactic validation of all objects before

they are entered into the database
•  Embedded EE certificates in ROAs and manifests

are extracted and handled independently
•  Linked to the original object in the DB

•  Trust anchors are added out of band

6

Database Structure
•  One table for each type of object
•  Adding objects triggers object-specific actions

•  Adding a certificate triggers path discovery
•  Adding a CRL revokes all the certificates in the DB named by that

CRL
•  Software “glue” layer abstracts table layout so that changes

in DB structure (e.g., recent addition of support for CTA)
are isolated to a small set of interfaces written in C

•  DB locking is used to prevent collisions between
asynchronous software components

•  DB presents an external interface that implements the RTR
protocol

•  Highly tuned and optimized for optimal performance

7

Garbage Collector

•  Handles time-related state changes
•  Certificate expiration
•  ROA (EE certificate) expiration
•  CRL staleness
•  Manifest staleness

•  Run asynchronously as a cron job

8

URI Chaser
•  Scans for CRLDPs (certificate extension)
•  Compacts the list of CRLDPs to a minimal subset

•  Reduced to smallest set that fetches from all CRL
publication points in order to minimize network traffic

•  Updates rsync’s dynamic configuration file
•  An asynchronous process

9

RPSL Output Generation
•  Database query client extracts a raw set of

“plausibly valid” ROAs
•  Applies user-configurable filters

•  Stale CRL OK?
•  Stale Manifest OK?
•  Expired certificate in path OK?
•  Superseded manifest OK?

•  All filters have default settings based on our
understanding of most likely use case

•  Generates RPSL based on filtered output
•  Can be run synchronously or asynchronously
•  Can also be used to perform generalized database

queries without a user needing to learn SQL
10

Router Protocol Support
•  Newly proposed protocol (draft-ietf-sidr-rpki-

rtr-01) for communication between an RPKI server
and a router (within an AS)

•  The protocol assumes a server that
•  Fetches certificates, CRLs, and signed objects from the

RPKI repository system
•  Processes these objects to maintain a local cache
•  Sends messages to routers to notify of cache updates,

and replies to queries with <prefix, ASN list
•  The RP software provides a suitable server cache

11

Current System Performance
•  Tested the system using simulated repository data

generated from RIR “profiles”
•  9,932 CA certificates

13,292 EE (embedded) certificates
 6,646 CRLs
 6,646 ROAs
 6,646 manifests
43,162 objects in all => 47 minutes 26 seconds

•  Whole Internet deployment (~300,000 objects)
=> ~ 5.6 hours (one time cost of initializing DB)

•  Typical daily update (3,000 objects) => less
than five minutes

•  We’re working to improve these numbers
12

Planned Software Enhancements
•  Complete local trust anchor management, as

defined in draft-reynolds-rpki-ltamgmt-00.tx
•  Complete port to Mac OS X, FreeBSD (7),

OpenBSD
•  Track SIDR decision on trust anchor configuration,

and support accordingly
•  Support new RPKI signed objects as they are

defined, e.g., the “Ghost Buster” record
•  Enable parallel rsync fetches, back off and retry
•  Improve performance, fix bugs, …

13

Questions?

14

