

DNS root server deployments

George Michaelson
DNS operations SIG
APNIC17/APRICOT 2004
Feb 23-27 2004
KL, Malaysia

Why deploy an anycast node?

- Increase resistance against DDoS Attacks on the root
- Improve service quality
 - Speed of root-transit DNS queries
 - Resiliance to loss of connectivity

Increase resistance to DDoS

- Prime goal for existing deployments
 - Target sources, locations with rich interconnect
 - Higher risk of DDoS traffic
- Achieve rich path diversity
 - No single path to flood
 - No single points of failure
 - Distribute DDoS load over net

Improve service quality

- For us, in AP region
 - CN node has improved DNS RTT to root 15x
 - Invest in emerging/developing Internet nations
 - Encourage good routing practices
 - avoid expensive offshore transit to critical infrastructure
 - Improve knowledge/cooperation
 - HKIX node serves very diverse paths in AP region
- Protect countries against loss of external connectivity
 - Eg undersea cable failure

APNIC's Role in root services

- Facilitate improved root services in AP region
 - Leverage APNIC member (ISP) resources
- Provide coordination point in AP region
 - Coordinate with root operators (F,K,I,M)
 - Host discussions during APNIC meetings
- Fund and/or coordinate sponsorship
 - Hardware, hosting, maintenance costs
 - According to individual circumstances
- Undertake formal agreements
 - MoUs with root operators (F and I so far)
 - MoUs with hosts
 - Long standing relationship with RIPE NCC
- Currently no "root operator" responsibility

Timeline of APNIC deployments

- Nov 2002
 - APNIC announces MoU with ISC to deploy root nameservers in AP region, calls for EOI
- Jan 2003
 - Node deployed at HKIX, hosted by CUHK
- Sep 2003
 - Node deployed in Seoul, hosted by KRNIC
- Oct 2003
 - Signed MoU with Autonomica (I-Root)
- Nov 2003
 - Node deployed in Beijing, hosted by CNNIC, China Telecom and China Netcom Corporation (CNC)
- Dec 2003
 - Node deployed in Taipei Hosted by HANET
 - Node deployed in Singapore Hosted by NUS/SOX
- Jan 2004
 - Node deployed in Brisbane Hosted by PIPE networks

O

APRI

Plans for 2004

- Further deployments planned
 - with F (ISC), I (autonomica) & K (RIPE NCC)
 - Balancing goals, locations, size issues
 - K-Root interested in AP region 'global' node
 - I-Root to be deployed at HKIX, Mar 2004
- EOI/CFP to be re-issued. Goals:
 - Regional development
 - Improve resiliency at existing PoP
- Continued coordination in region
 - Report to APNIC dns ops sig regularly

Where is my root coming from?

- For F:
 - Find current nodes from http://f.root-servers.org
 - dig @f.root-servers.net. HOSTNAME.BIND chaos txt
 - Should show sensible path to local node
 - Eg In NZ should show path to F-root in Auckland
 - Eg In KR should show path to F-root in Seoul
- For any root:
 - traceroute i.root-servers.net
- APNIC encourages participation in BGP peering with critical infrastructure

F-Root Node Overview Internet ISP A ISP B IX r1<u>r</u>2 b Z a

F-Root Node Hardware

Routers

- Cisco 7xxx or Juniper M5
 - High filtered packet rate
 - Multi Gbps throughput
 - At least two external ports

Switches

- Cisco 29xx/35xx
 - 100mbit FD
 - gig-E interconnect to routers

Hosts

- Dell 1750
 - 2.4Ghz/1Gb/40Gb
 - Dual 10/100/gig-E NIC
 - All FreeBSD 4/5-Stable
 - z (monitor) node has RAID
 - a & b run Bind 9

Node Behaviour

- Two independent Routing paths, one switch fabric on two switches
 - Management (z) host has consoles for all devices, modem
- Each Router connected to IXP directly
 - Also has independent off-exchange transit
- No cross-connect from the DNS hosts (a,b) or z host
 - Additional benefit marginal, set against added complexity
- Node is capable of handling local overcommitted load
 - Both network and CPU/memory bandwidth will scale to meet future trends
 - Local Nodes do not take failover service from each other, failure mode is to global nodes only at this time
- Nodes can fail: but there are many of them

Front of Node Routers, Switches, (serial console), hosts

> Back of Node Local media conversion (ZX to SX), hosts

١.

Routing Architecture

- One AS for service, route announced to IX participants
 - Each node announces 192.5.5.0/24 with a node-specific peer AS but with a consistent Origin AS across all anycast nodes of 3557
- Additional Management AS
 - A node specific route is announced to two or more transit providers which allows the node to be managed remotely
 - Management paths avoid IX fabric, DDoS risk if IX flooded.
- Two connects to IX fabric, Two management paths
 - Can engineer routing changes, service changes with no loss of service from site as a whole

Routing Architecture

- Prefix announced with 'no export' community
- Propagates firstly to IX participants
 - One or more may provide limited transit
 - Direct customer routes possible (see APNIC)
- Limits horizon of visibility
 - Wider visibility can be organized (see APNIC)
 - During failure (eg DDoS) load shed is always to Global node(s)
 - So far, all ISC Deployments in AP region local nodes only
 - Visibility is not necessarily limited to one country
- Anycast prefix should not be announced for transit

ISC information pages

- Current list of anycast nodes
 - http://f.root-servers.org
- Hierarchical Anycast Architecture
 - http://www.isc.org/tn/isc-tn-2003-1.html
- Peering with ISC
 - http://www.isc.org/peering

Questions?

Thank you

ggm@apnic.net

