Measurement of Jitter over time

'Etuate Cocker

ecoc005@aucklanduni.ac.nz

Dr. Ulrich Speidel

ulrich@cs.auckland.ac.nz

Department of Computer Science,

Tamaki Campus,

The University of Auckland

Overview

- Voice and data transmissions in low bandwidth and high latency networks (i.e., typical Pacific Islands)
- Measurement of jitter for voice and data transmission in high latency and low bandwidth networks

Pacific Island Countries (PICs)

- Region spread across 33 million square kilometres of ocean.
- Home to 22 countries.
 Consist of 1118 inhabited islands, many barely above sea level.
- Each country has less than 25% of population with access to Internet. Internet available in work places, educational institutions and public facilities.

Source: Ministry of Lands in Tonga

International Connectivity in PICs

- Internet connectivity is possible with high latency satellite links to TNZI in NZ, TATA in Canada, PACTEL in Australia.
- Maximum downlink less than 30Mbps; uplink of approximately 15Mbps for whole country. Customers purchase bandwidth from 56Kbps to 2Mbps.
- Fibre optic submarine cables only in few places such as New Caledonia,

Last Mile Internet Connectivity in Pacific Island Countries

- Old routers used to connect to Internet
- Updated your firmware lately?
- Old computers without antivirus or security updates
- Poorly maintained phone cables used to connect customers, with few ADSL subscribers

Source: Ministry of Lands - remote solar centre

Packets Transmissions

Packet Transmissions

So...

- Old overloaded infrastructure communicates over links with little bandwidth and a lot of unwanted traffic.
 - Long router queues/high packet loss
 - Possible multipath on international links
- This means: packets that we transmit at regular intervals (such as in a VoIP stream) don't necessarily arrive at regular intervals – or at all
- This means VoIP and other real-time protocols don't work that well in the Pacific
- Can we measure this objectively?

Our Beacon Network

URL: https://130.216.5.147/

Username: csusers Password: cs2013

What the Beacons do

- Work in pairs to exchange synthesised traffic
 - UDP: VoIP-like stream of numbered and timestamped packets
 - TCP: VoIP-like constant data rate stream
 - TCP: Download-like maximum data rate stream
- Log packet/data arrival time plus TTL at receiver
- Also log transmit queue time and dequeue time
- Logs retrieved to central repository for analysis and archiving

Example - Packet Loss

Packet Loss between TO2 to TO1 and CA1 to NZ2

Example: Out-of-order arrivals

Out of Order Arrivals between TO2 to NZ3 and TO2 to TO1

Jitter

 Jitter is the variation in packet travel times and / or packet arrival times

Different definitions exist

Measurement of Jitter

• E.g., beacon software transmits and receives synthesised UDP packets with sequence numbers and timestamps every 20 milliseconds (10,000 packets in one experiment)

- 3 experiment runs per day
- Compute jitter from timestamps logged

Example: Transit Jitter

Example: Packet pathways - TTL

Packet Train Arrival Entropy

- What is entropy?
 - Predictability of arrival timing
 - Recurring patterns in arrival timing

Provide example of entropy

Entropy Measures

- Need to produce a string (or sequence of symbols) think of this as a Shannon "source"
 - E.g., We have the following threshold
 - A = inter-arrival time o- 15ms
 - B = inter-arrival time 15-18ms
 - C = inter-arrival time 18-22ms
 - D = inter-arrival time 22-25ms
 - E = inter-arrival time > 25ms
- Then map inter-arrival times to symbols to get following results

		, ,	
Packet no.i	Arrival timestamp (ri)	Difference Inter-Arrival Time	Symbol
0	(packet lost)		
1	1348001461.691		
2	1348001461.717	26	E
3	1348001461.738	21	C
4	1348001461.760	22	C
5	(packet lost)		
6	1348001461.821		
7	1348001461.828	7	Α
8	1348001461.848	20	C

Jitter to Entropy

- Then: Compute entropy from string (Shannon, Tentropy, LZ compression ratio)
- Entropy is able to classify more complex patterns as 'normal' that pure jitter measures would consider random
- Example on previous slide maps to x = ECDEAC, If string contain all CCCCCC then jitters are normal since we transmit every 20 milliseconds.
- "Real" strings are up to 9999 symbols long!

Result: Inter-arrival T-entropy

Beacons Long Term

 Trends in jitter: Will jitter increase or decrease over time?

• Trends in TTL: Will multipath propagation increase as additional links are added?

• Trends in entropy: Will arriving data streams become less predictable?

Intend to measure for many years to come

Conclusions

 Beacons provide tool for monitoring long term developments of jitter and entropy

Thank You

Questions?