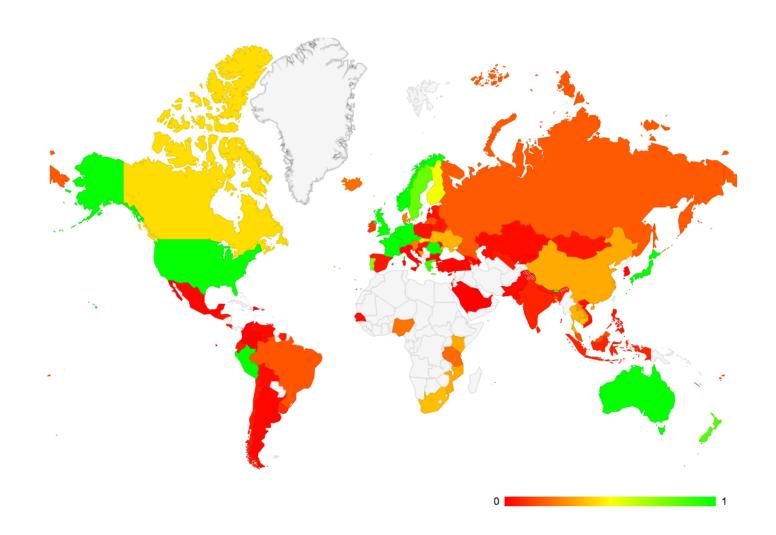


Understanding the IPv6 landscape

George Michaelson

Research Scientist



Understanding the IPv6 landscape

- Many measures
 - Volume of packets at Exchange points, Trunks & Interconnects
 - Percentage of significant websites enabled for IPv6
 - Volume of IPv6 prefixes assigned in region/economy/industry-sector
 - End user behaviour
- APNIC is measuring end-user client readiness
 - "If I enable IPv6 in my network, can my clients make use of it"
 - "how many people behind my infrastructure are already using IPv6"
 - "how many people prefer IPv6 if offered a dual-stack resource"
- There isn't a single-line answer: the landscape is complicated
 - Large variances in capability by economy, region, industry-sector

Why so much variance?

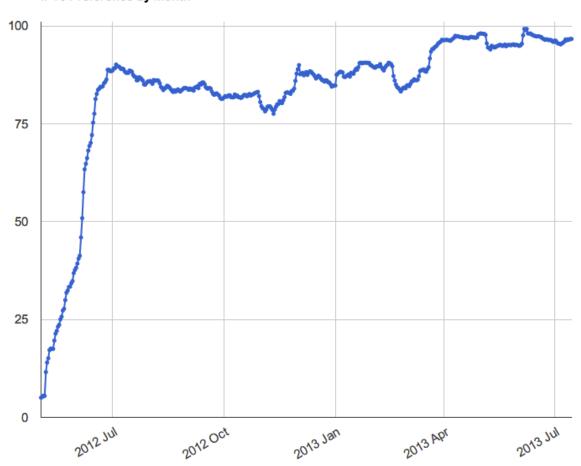
- Short answer: we don't know.
- Longer answer(s)
 - Local conditions vary by pricing, distance, technology, regulation...
 - Customer access looks to require (re)capitalization of the CPE
 - Where are you in your ROI and ageing of the existing capital investment?
 - LTE looks to be a good candidate for motivated people to deploy IPv6 but...
 - Many telephony deployments are now an 'outsource' and IPv6 is not in the default offering
 - Handsets do not necessarily cope well with multiple protocols
 - Some of this may be distortions due to limitations in measurement
 - We can't reliably measure iOS or non-flash on some devices (yet)

How we measure

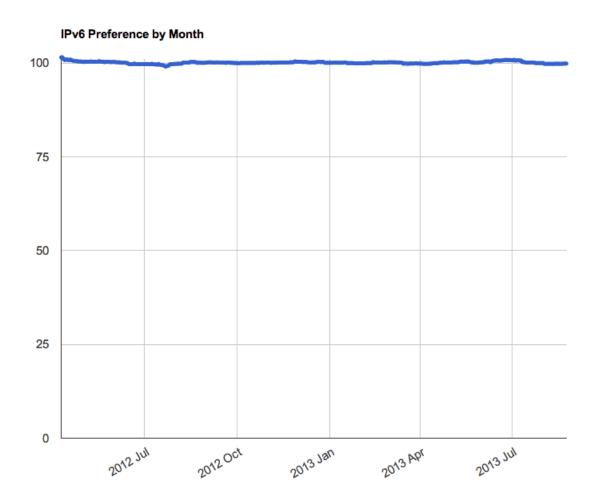
- Targeted additions to websites (JavaScript)
 - One-line addition to existing markup
 - Can perform 1:n subsample, back off daily, weekly/monthly
 - Can blacklist known problematical networks
 - Pro: Simple, Targeted, Quick
 - Con: Prone to website specific distortions, oversampling
- Flash advertising: paid adverts with flash tests embedded
 - Random clients, worldwide (can target)
 - \$100 p.d == 350,000 tests
 - Pro: Large random sample
 - Con: Can't measure phones, mobile devices (flash restrictions)

Whats happening now?

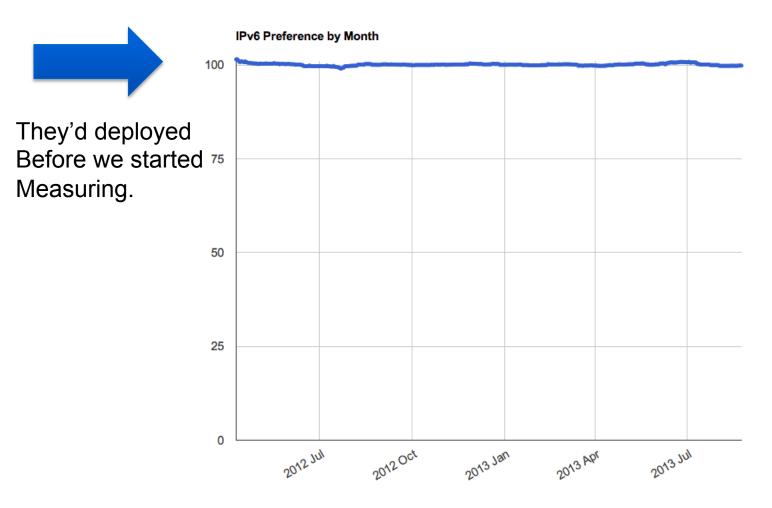
- Four rough sub-classes of IPv6 uptake being seen:
 - All the way
 - Slope
 - Wavy
 - Not happening
- Each has different consequences, implications for people in the same circumstance, or considering their deployment strategy
- Which one are you?


All the way

- Typically Academic and Research networks
 - High degree of modern OS, equipment
 - Little CPE: mostly campus networks with direct high speed Ethernet attachment
 - Can saturate at 60%+ but can go to 100% penetration
- Examples: Curtin Uni, Indiana GigaPOP
- If you are in this category WELL DONE
 - You probably don't need to be reading this slide pack!



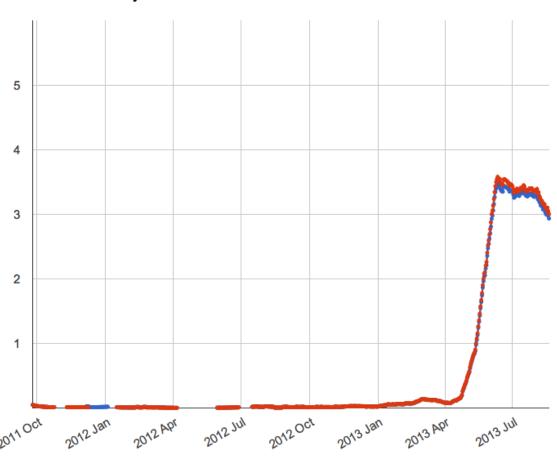
Curtin University



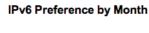
Indiana GigaPOP

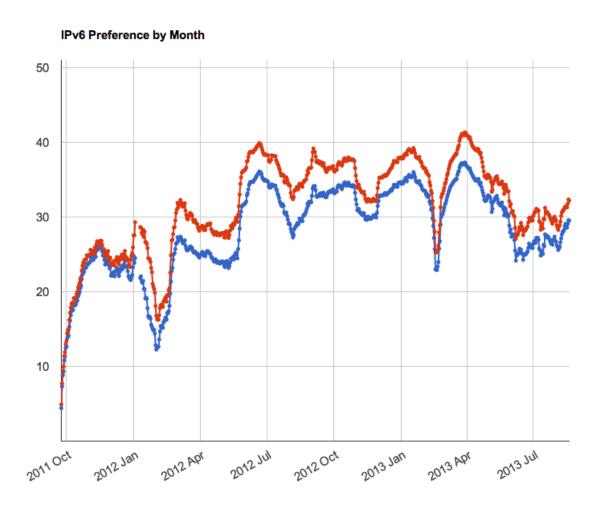
Indiana GigaPOP

All the way, but goes to a shelf

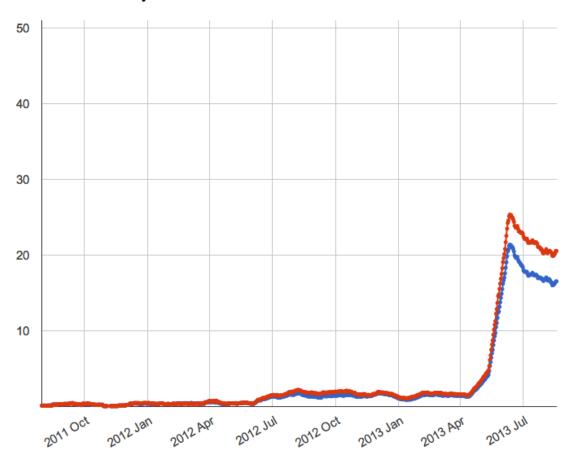

- initial early adoption, rapid rise to a saturation level, then stable at some level
 - Typically between 5% and 20% but can be higher
 - Reflects penetration of IPv6 enabled end devices capable of being measured, against total population of users
 - NAT, older CPE, Windows XP at 30% (declining)
- Examples: ForthNet, FreeNet, CERNET, Swisscom, JANET
- Some indications from ISPs that this undercounts, their CPE can be enabled but we don't "see" end user activity
- Some players in this category are using 6rd, centrally managed CPE
 - All turn on at close to the same time, so reach saturation quickly

Forthnet (GR) recent 6rd deployment

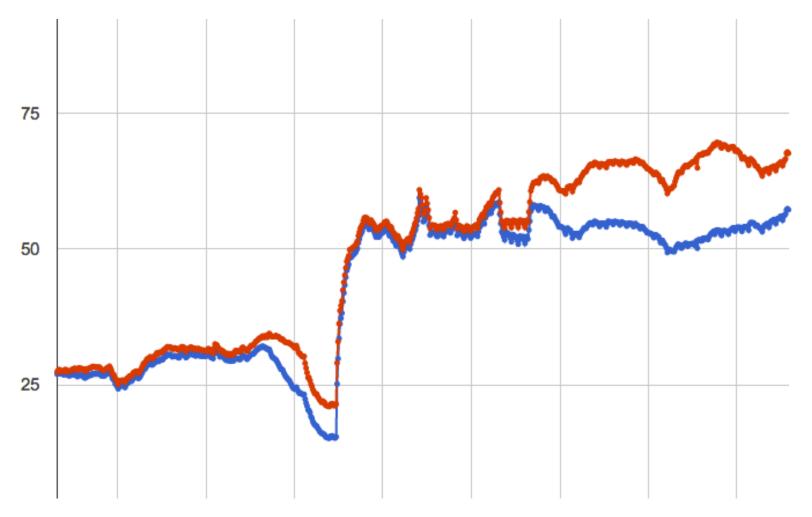


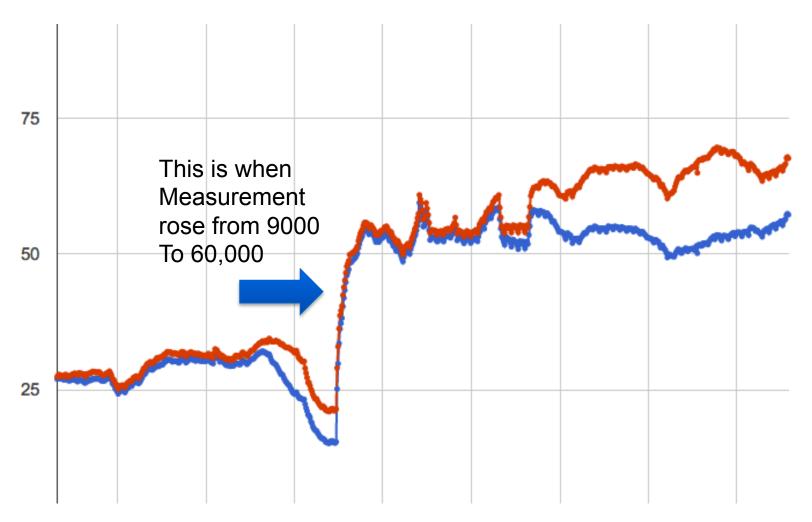

FreeNet (FR) mature deployment 6rd

China Education and Research Net



Swisscom (CH) 6rd deployment


IPv6 Preference by Month


JANET(UK) Mature Academic Network

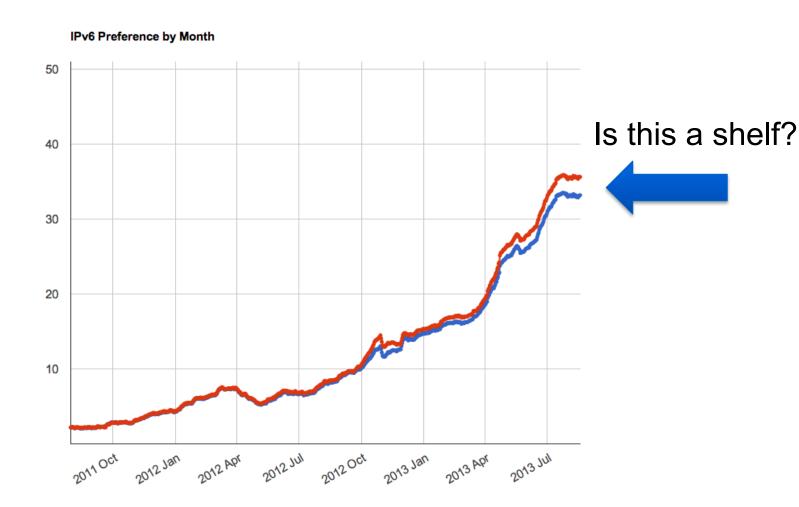
JANET(UK) Mature Academic Network

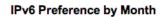


Slope

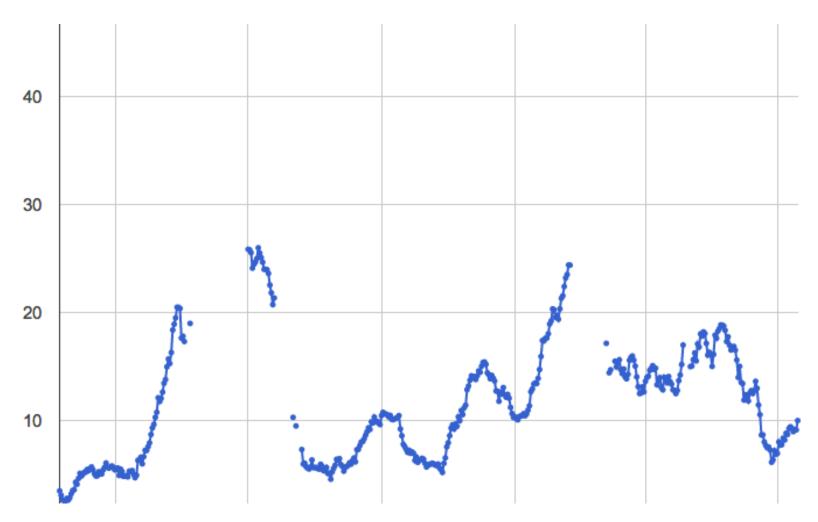
- ISP in early stages of deployment, staged deployment
- No or few legacy users, or replacing CPE
- May be heading to a shelf, but hasn't got to the cutoff point.
 - If no legacy, the cutoff may not be low! (Verizon, LTE deployment)
- Examples: Verizon, KDDI
- Where the line is going to 'end' isn't clear. At least one example on this pack was still in growth mode, 2 months ago and has just (possibly) turned an inflection corner.

Verizon: LTE, legacy-free


IPv6 Preference by Month


Verizon: LTE, legacy-free

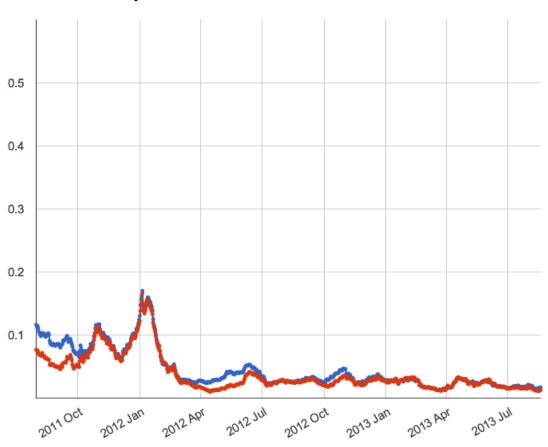
KDDI

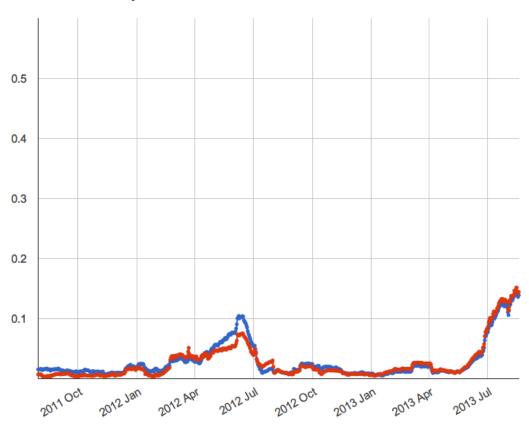

Wavy

- Varying visibility into the experiment despite apparently high numbers
- Unstable dynamics of usage
- May reflect firewalls, interception devices, or other dynamics limiting visibility to the experiment
- Examples: China
- We can't reliably measure, so the exact dynamics from our data won't help inform you

Academica Sinica (CN)

Not happening


- Little or no evident IPv6 despite large volume of experiments
 - CPE incapable of upgrade,
 - pricing & other factors limiting uptake
- Devices incapable of running flash or javascript but invoked into measurement
 - Behind CGN, Proxy devices
- Example: KR, Telstra ...


Korea (all ASN)

IPv6 Preference by Month

Telstra (AU) recent early-stage tests?

Drilling down into an economy

- Global Economy figure can be expanded into per-AS view
- AS with significant adoption
- AS with little or no adoption
- AS with IPv6 via other AS

Example: Singapore top 12

ASN	AutNum	Network Name	count	%capable	%preferred
24482	SGGS-AS-AP	SG.GS	213	28.2407	25.463
7472	NUS-AS-AP	Computer Centre	343	18.5714	17.4286
55430	STARHUBINTERNET-AS-NGNBN	Starhub Internet Pte Ltd	7526	15.6201	13.5184
4773	MOBILEONELTD-AS-AP	MobileOne Ltd. Mobile/Internet Service Provider Singapore	37415	10.2471	9.20672
18106	VIEWQWEST-SG-AP	Viewqwest Pte Ltd	832	1.4068	0.820633
10091	SCV-AS-AP	StarHub Cable Vision Ltd	17526	1.08992	0.397366
9506	MAGIX-SG-AP	Magix Broadband Network	151312	0.396424	0.378137
132047	MYREPUBLIC-SG	MyRepublic Ltd.	2588	0.191424	0.191424
17547	QALA-SG-AP	M1 CONNECT PTE. LTD.	2718	0.144718	0.108538
4657	STARHUBINTERNET-AS	StarHub Internet Exchange	3862	0.301432	0.100477
3758	ERX-SINGNET	SingNet	9300	0.0837872	0.0628404
45143	SINGTELMOBILE-AS-AP	SINGTEL MOBILE INTERNET SERVICE PROVIDER Singapore	7465	0.0929738	0.0531279

General observations

- Innate IPv6 capability is baked into OSX, Windows, Linux/ Unix, many 3G & LTE handsets, 3G/LTE modems.
 - Legacy is a declining problem, but there is a large XP overhang
- Most of the problems with deployment in scale relate to intermediate CPE/home-router boxes.
 - We believe in almost all cases, the significant heavy lifting to deliver
 IPv6 to the core has been done, or is tractable on current equipment
- There are some downside risks to 'adding' IPv6 to your services without planning
 - Additional delays during connection if gethostbyname() returns IPv6 addresses and they don't respond
 - More is not always better: same entity on IPv4 and IPv6 looks like two different things, both will be tried if its offline

Questions you can ask yourself

- Do I understand my local landscape?
 - What are other people in my economies of interest doing?
 - Do I have a window for a competitive advantage?
 - Am I falling behind?
- Where am I, in a capital investment cycle?
 - Good time to require end-user IPv6 is baked into CPE purchases
- Are IPv6 customers valuable customers?
 - Yes. They appear to be high end users, looking for quality/ distinguishing services
- What are my competitors doing?
 - Comcast announced IPv6 some time ago. It only 'took off' recently
 - IPv6 growth can come very quickly, from a low base

Questions you can ask yourself

- What percentage of users in my client base could use IPv6
 - Hint: the newer their platform, the higher the count
 - Hint: if you accept mobile data roaming in 3 or 4 G, then you may already have people roaming onto you who use IPv6 (remember all data trombones back to their home provider in a tunnel)
- We undercount iOS and Android. So things can be better than we show if that's your core client platform
- How close is my IPv6 backhaul to my IPv4 transit paths?
 - It's a good idea to try and make them congruent.
 - 'follow the money'
 - If your V4 transit isn't providing IPv6, look around.

Questions you can ask yourself

- I think I'm on the slope
 - Where are you going to hit? 10% 20% 60% 100%
- I think I've plateaued
 - If you're under 20% it may be XP or other blockers.
 - Maybe the way you're deploying has a hiatus?
- I look hard to measure/variable data
 - Think about hosting Javascript and getting more data
- I'm on 100%
 - Why are you reading this slidepack!

How you can help

- More measurements are better!
- Place the Javascript ad on popular websites relevant to your interests
 - Local, national weather sites. Radio stations. Newspapers
 - Avoids sample bias, captures cross-provider end-user traffic
 - Specific webs can work too: eg Tertiary education samples collected in UK from JANET homed webpages
- Help us by funding flash adverts
 - We can target specific client interests, economies, times of day
 - Data for developing internet economies, Africa, Pacific needs improvement

Join in!

- Run the javascript:
 - Contact <u>research@apnic.net</u> to get experiment id
 - One line of </script> embedded in your web
 - Can restrict return rate, sample, exclude networks
- Help us with flash advertising
 - We can target flash campaigns to specific regions, keywords, networks
 - \$100 p.d. gets 250,000 measurements

