DITL & APNIC

George Michaelson APNIC 26, Christchurch

Overview

- What is DITL?
- How APNIC deployed data-capture
- Outcomes
- Where to from here?

What is DITL

- "Day In The Life" of the Internet
 - -24hours of data capture
 - A snapshot of "what really goes on"
 - Collect, not sample or just measure
- Opportunity for long-life research
 - Compare to past years, future years
 - "what if" questions on data after the event
 - Data archiving, future unplanned uses
 - Rights of use has to be managed

What is DITL (cont)

- Organized by CAIDA
 - Cooperative Association for Internet Data Analysis
 - http://www.caida.org/
 - Safe harbour for data
 - Can observe different T&C to access, publish
 - Long-term data storage
 - Data storage, collation facilitated by OARC
 - https://portal.dns-oarc.net/
 - 'thumper' RAID TB filestore
 - S/W support, operations/management

24 hours of data capture!!!

- ...actually, it was 48 hours
 - Worldwide coordination required some timezone arithmetic
 - ...which some of us got a bit wrong!- (ie me...)
 - Previous experience showed getting complete data for a given 24h window was difficult without more data to select from
- Yes. It's a lot of data
 - APNIC's contribution was ~ 300Gb alone

Participation

- 156 points of measurement
- 24 agencies
 - -Roots, ccTLD, RIR, R&D
- 2Tb of data collected over 48hr+ window
- APNIC's contribution
 - -329Gb
 - All NS, primary (in-region) and secondary (cctLD, other RIR)
 - Passed via SSH to OARC over 96h period

Lessons learned

- Practice makes perfect...
 - Timezone arithmetic
 - Smaller blocks, sent more often, parallelize
- Can't scale disk to infinity
 - Capture designed for 2+ weeks retention
 - DNS load growth exceeded expectations
- Sample or Measure?
 - -Jury still out: both have merits, depending
 - Why not do both?
 - Get samples from capture (used for measurement)

How to capture?

- Originally used on-server tcpdump
 - Higher CPU load, can impact service
 - More chance of packetloss
 - (design of packet filter in kernel drops for the collector, not the real socket endpoint)
 - Servers not designed for this scale of data capture
- Clearly needs re-design for DITL
 - More disk
 - More CPU
 - More flexibility

Passive TAP approach

- Rejected switch-level portspan
 - Imposes switchload, uncomfortable with remote deployment and switch reconfig
- Selected a 1Gig capable TAP, copper
 - Futureproof for re-scaling (current service delivery is 100mbit)
 - Fibre service delivery not yet common in locations
 APNIC provides service to
 - Vendor-backed 1-packet cost to switchover
 - Dual power supply, failure mode is passive connector
 - Alternate second tap on unit, permits onsite checks
 - No kernel mods, no OS dependencies
 - Libpcap, tcpdump well understood

APNIC DNS measurements

- 5+ year investment in DNS measurements
 - sample-based, not measurement of all DNS
 - 15min duty cycle, 1min packet collector
 - Using tcpdump already
 - Counting by economy, V4/V6, type
- Also OARC "DSC"
 - Measurement of all DNS
 - Distributed collector, central repository model
 - Ssh, rsync, push model to feed repository
 - Libpcap based collector (lib-level tcpdump)
 - XML data retention, mapped into simple CSV file
 - Graphing tools on web (perl)
- Both Ideal to move to TAP based model
 - No loss of historical data series

The APNIC DNS measurement node

- Redhat EL -series OS
- Mirrored 750Gb disks
 - Typically 3-day data retention, up to 10 days for smaller traffic node
- 3-ethernet model (PCI card)
 - Management I/f distinct from capture port
 - -Node can measure up to 2 DNS servers onsite
- Packet capture feeds sample, DSC collections
 - Pushed to central collector on management I/f

DITL outcomes

• Published at CAIDA website eg:

DITL 2008 Analysis

Sebastian Castro

Cooperative Association for Internet Data Analysis - CAIDA

San Diego Supercomputer Center,

University of California, San Diego

http://www.caida.org/publications/presentations/2008/oarc_castro_ditlanalysis/oarc_castro_ditlanalysis.pdf

A Few highlights...

General Stats

	DITL 2007 Root Servers	DITL 2008 Root Servers
Dataset duration	24h	24h
Number of instances	C: 4/4 F: 36/40 K: 15/17 M: 6/6	A: 1/1 C: 4/4 E: 1/1 (4 nodes) F: 35/41 H: 2/2 (v4 and v6) K: 15/17 L: 2/2 M: 6/6
Query count	3.84 billion	7.56 billion
Unique clients	~2.8 million	~5.6 million
Recursive Queries	17.04 %	11.95 %
TCP Bytes Packets Queries	1.65% 2.67% ~700K	0.80% 1.34% ~1.97 million
Queries from RFC1918 address space	4.26%	1.38%
Queries from Bogon address space	0.05%	0.37%

Query rates on IPv6

Evolution of EDNS

The fraction of queries with EDNS increased in 2008, but the fraction of clients with EDNS support dropped!