
1

Practical use of RPSL and IRR tools

15th APNIC Open Policy Meeting
Taipei, Taiwan

Andy Linton <asjl@lpnz.org>

Goals of the tutorial

To make the life of LIRs and ISPs easier by:
familiarising LIRs and ISPs with the features of Routing
Registry (RR)
introducing tools & services provided by APNIC

To promote usage of the RR
A chance for practical exercise

NOT to teach the basics of routing

NOT to explain how to obtain Internet resources (IP & ASN)

NOT to help decisions on network setup

Assumptions

The audience
Knowledgeable about BGP routing
Familiar with LIR terms & procedures
Familiar with basic RIPE DB operations
Curious about Routing Registry usage

The course does not give everything
Gives: Introduction, examples, references
Is NOT a replacement for hands-on experience!

Questions anytime!

2

Agenda

Routing Policy
What is Routing Policy?
Why define one?

RPSL
What is RPSL?
RR as a part of the APNIC whois DB & IRR
Specifying Routing Policies Using RPSL &
Configuring Routers Using RtConfig
IRRToolSet

Summary, discussion, evaluation & homework

What is a Routing Policy?

Public description of the relationship between
external BGP peers:

Who are my BGP peers?
What routes are

Originated by a peer
Imported from each peer
Exported to each peer
Preferred when multiple routes exist

What to do if no route exists

Can also describe internal BGP peer
relationship

Routing Policy Example

AS1 originates prefix
"d"

AS1 exports "d" to AS2,
AS2 imports

AS2 exports "d" to AS3,
AS3 imports

AS3 exports "d" to AS5,
AS5 imports

3

Routing Policy Example (cont)

AS5 also imports "d"
from AS4
Which route does it
prefer?

Does it matter?
Consider case
where

AS3 = Commercial
Internet
AS4 = Internet2

Why define a Routing Policy?

Documentation
Provides a debugging aid

Compare policy versus reality
Consistency across your AS

routers / implementations
Provides routing security

Can peer originate the route?
Can peer act as transit for the route?

Scalability
allows automatic generation of router
configurations

What is RPSL?

Object oriented language
Development of RIPE 181
Structured whois objects
Describes things interesting to routing policy:

Routes
AS Numbers
Relationships between BGP peers
Management responsibility

4

Why use RR to store your policies?

Consistent configuration between BGP peers
(peers & customers & upstreams)
Expertise encoded in the tools that generate the
policy rather than engineer configuring peering
session
Automated, manageable solution for filter
generation / router configuration
Provides a debugging aid

Compare reality versus policy

Exercise: Determining Routing Policy

Who are my BGP neighbours?
(customers/ peers/ upstreams)

What routes are:
Originated by each neighbour?
Imported from each neighbour?
Exported to each neighbour?
Preferred when multiple routes exist?
How are they treated (modified routing parameters?)

What to do if no route exists?

What is the Routing Registry and why
should I Use it?

Policy based routing
Allows different criteria as basis for routing decisions

Routing policy - description of the relationship
between external BGP peers
Next level of abstraction: RPSL
RR & Existing tools
Ultimately: easier maintenance of routing
configuration in big & complex networks
See http://www.apnic.net/services/apnic-rr/rr-
benefits.html

5

Real-life examples of RR usefulness

connect.com.au
whois –h whois.ripe.net -s RADB -r -T aut-num AS2764

C&W, running private RR for their customers

Some AS numbers with detailed policy:
whois –h whois.ripe.net -r -T aut-num AS286 (KPN Eurorings)
whois –h whois.ripe.net -r -T aut-num AS5400 (BT)
whois –h whois.ripe.net -r -T aut-num as1299 (Telia)

APNIC Database & the Internet Routing
Registry

Public Network Management Database
“whois” info about networks & contact persons

Routing Registry contains routing information
Using RPSL

APNIC RR is part of the IRR:
http://www.apnic.net/services/apnic-rr-guide.html
Distributed databases that mirror each other

Enough to register your objects and policy in one

IRR = RIPE + RADB + APNIC + ARIN + …

Use of RPSL

Use RtConfig v4 (part of IRRToolSet from RIPE)
to generate filters based on information stored in
our routing registry

Avoid filter errors (typos)
Filters consistent with documented policy (need
to get policy correct though)
Engineers don't need to understand filter rules (it
just works :-)

6

RtConfig

Part of the IRRToolSet
Generates router configuration based on the RR

Cisco, Bay's BCC, Juniper's Junos and Gated/RSd
Creates route-map and AS path filters
Can also create ingress / egress filters

(documentation says Cisco only)

RtConfig: Command-line Usage

Environment variables
IRR_HOST=whois.apnic.net
IRR_PORT=43
IRR_SOURCES=APNIC
Must specify: -protocol ripe

Overridden by command line options
RtConfig -h localhost -p 43 -s RRTEST -protocol ripe

RtConfig –protocol ripe
>RtConfig @RtConfig [command]

RtConfig Example: Creating Access Lists

route: 10.4.192.0/19
origin: AS4000
[…]

$ RtConfig –protocol ripe
RtConfig> @RtConfig access_list filter AS4000
!
no access-list 101
access-list 101 permit ip 10.4.192.0 0.0.0.0 255.255.224.0

0.0.0.0
access-list 101 deny ip 0.0.0.0 255.255.255.255 0.0.0.0

255.255.255.255

7

RtConfig Example 2: 'Martians' Filter
RtConfig –protocol ripe -supress_martian
RtConfig> @RtConfig access_list filter AS4000
!
no access-list 100
access-list 100 deny ip host 0.0.0.0 any
access-list 100 deny ip 127.0.0.0 0.255.255.255 255.0.0.0 0.255.255.255
access-list 100 deny ip 10.0.0.0 0.255.255.255 255.0.0.0 0.255.255.255
access-list 100 deny ip 172.16.0.0 0.15.255.255 255.240.0.0 0.15.255.255
access-list 100 deny ip 192.168.0.0 0.0.255.255 255.255.0.0 0.0.255.255
access-list 100 deny ip 192.0.2.0 0.0.0.255 255.255.255.0 0.0.0.255
access-list 100 deny ip 128.0.0.0 0.0.255.255 255.255.0.0 0.0.255.255
access-list 100 deny ip 191.255.0.0 0.0.255.255 255.255.0.0 0.0.255.255
access-list 100 deny ip 192.0.0.0 0.0.0.255 255.255.255.0 0.0.0.255
access-list 100 deny ip 223.255.255.0 0.0.0.255 255.255.255.0 0.0.0.255
access-list 100 deny ip 224.0.0.0 31.255.255.255 224.0.0.0 31.255.255.255
access-list 100 deny ip 169.254.0.0 0.0.255.255 255.255.0.0 0.0.255.255
access-list 100 permit ip 10.4.192.0 0.0.0.0 255.255.224.0 0.0.0.0
access-list 100 deny ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

AS4202AS4201AS4200

AS4000

Stub network AS2000

AS3000

AS5000 AS7000

Customer1 Customer2 Customer3 Customer4Customer5

LIR1 LIR2

Upstream1

Upstream2

 Experimental setup: AS relations

AS4208AS4204AS4200

AS4000

AS2000

AS3000

Customer1
Customer2

Customer3 Customer4Customer5

LIR1 LIR2

10.4.200.0/22 10.4.208.0/22

10.4.204.0/22

10.4.192.0/19
10.3.0.0/20

10.3.1.0/24 10.20.0.0/24

AS relations, including allocations &
assignments

10.187.65.0/24

Stub network

8

AS4202AS4201AS4200

AS4000

Stub network AS2000

AS3000

AS5000

Customer1 Customer2 Customer3 Customer4Customer5

LIR1 LIR2

Upstream1

Case studies, overview

1 3
2

5
5

4

6

AS2000

AS3000

Customer1 Customer2

LIR1

Case1: Static end-user set-up

Stub network

1

10.3.1.0/24

10.3.0.0/20 AS4000

Case 1: Static route importation into BGP

Use policy to filter static routes into BGP
Allows for martian filtering
AS path stuffing
Tagging routes with special communities
Other filtering, such as filter host routes

9

Case 1: Static route importation - aut-num

aut-num: AS3000
import: protocol STATIC into BGP4
 from AS3000

accept {10.3.1.0/24}
export: to AS4000 announce AS3000
[…]

Use this to create a filter that allows static routes
to be injected into BGP

RtConfig command: static2bgp ASN router

Case 1: Static import, RtConfig Output

RtConfig> @RtConfig static2bgp AS3000 0.0.0.0
!
no ip prefix-list pl130
ip prefix-list pl130 permit 10.3.1.0/24
ip prefix-list pl130 deny 0.0.0.0/0 le 32
!
no route-map AS3000-STATIC-EXPORT
!
route-map AS3000-STATIC-EXPORT permit 10
 match ip address prefix-list pl130
exit
!
router bgp 3000
 redistribute static route-map AS3000-STATIC-EXPORT
exit

Case 1: Route-set for static routes

Create route-set object which collects routes
together with similar properties:

route-set: name starts with RS-
members: lists the address ranges or other sets
mbrs-by-ref: <mntner-name>

Modify the aut-num object
Enables modification of router configuration in
indirect way by adding the new customer's static
prefix in the DB object

You can let admin staff to do this

10

Case 1: route-set object example

route-set: AS3000:RS-STATIC
descr: AS3000 Static routes
members: 10.3.1.0/24
admin-c: BM110-RRTEST
tech-c: BM110-RRTEST
notify: bert@example.net
mnt-by: LIR1-MNT
changed: bert@example.net 20021001
source: RRTEST

AS4000

AS2000

AS3000

Customer2

LIR1 LIR2

10.20.0.0/24

Case 2: Multi-homed customer, provider
set-up

10.187.65.0/24

2

10.3.0.0/20

Case 2: BGP customers, provider aut-num

aut-num: AS3000
import: from AS2000

accept AS2000
export: to AS2000 announce ANY
[…]

The simplest policy is strict customer/provider
relationship

Customer sends its routes to provider
Customer accepts everything the provider sends

RtConfig commands for import:
@RtConfig set cisco_map_name = "AS%d-IMPORT"
@RtConfig import yourASN your-routerIP
neighbourASN neighbour-routerIP

11

Case 2: Provider setup, RtConfig Output

@RtConfig set cisco_map_name = "AS%d-IMPORT"
@RtConfig import AS3000 10.0.1.3 AS2000 10.0.1.2

no ip prefix-list pl137
ip prefix-list pl137 permit 10.20.0.0/24
ip prefix-list pl137 permit 10.187.65.0/24
ip prefix-list pl137 deny 0.0.0.0/0 le 32
!
no route-map AS2000-IMPORT
!
route-map AS2000-IMPORT permit 10
 match ip address prefix-list pl137
exit
!
router bgp 3000
neighbor 10.0.1.2 route-map AS2000-IMPORT in

AS4000

AS2000

AS3000

Customer2

LIR1 LIR2

10.20.0.0/24

Case 3: Multi-homed customer, customer
set-up

10.187.65.0/24

3

Case 3.1: Not Full Multihoming

DB objects:
aut-num: AS2000
import: from AS3000 accept ANY
export: to AS3000 announce AS2000
import: from AS4000 accept AS4000
export: to AS4000 announce AS2000
[…]

route: 10.20.0.0/24 route: 10.187.65.0/24
origin: AS2000 origin: AS2000
[…] […]

Same RtConfig commands
inverse values (from the case 2 example)
need set of export/import statements for each provider

12

Case 3.1: RtConfig Output (export in the notes)

no route-map AS3000-IMPORT
!
route-map AS3000-IMPORT permit 10
!
router bgp 2000
neighbor 10.0.1.3 route-map AS3000-IMPORT in
!
!
no ip prefix-list pl134
ip prefix-list pl134 permit 10.4.192.0/19
ip prefix-list pl134 deny 0.0.0.0/0 le 32
!
no route-map AS4000-IMPORT
!
route-map AS4000-IMPORT permit 10
 match ip address prefix-list pl134
exit
!
router bgp 2000
neighbor 10.0.1.4 route-map AS4000-IMPORT in

Case 3.2: Full Multihoming

Introducing policy, setting the pref value
lower the pref, the more preferred the route

aut-num: AS2001
import: from AS3000 action pref=50; accept ANY
export: to AS3000 announce AS2001
import: from AS4000 action pref=100; accept ANY
export: to AS4000 announce AS2001

The difference in the router setup:
route-map AS3000-IMPORT: set local-preference 950
route-map AS4000-IMPORT: set local-preference 900

and does not specify address range, since the policy is ANY

Case 3.2: RtConfig Output (export in the notes)

no route-map AS3000-IMPORT
!
route-map AS3000-IMPORT permit 1
 set local-preference 950
!
router bgp 2001
neighbor 10.3.15.2 route-map AS3000-IMPORT in
!
!
no route-map AS4000-IMPORT
!
route-map AS4000-IMPORT permit 1
 set local-preference 900
!
router bgp 2001
neighbor 10.4.192.2 route-map AS4000-IMPORT in

13

Extra: Multihoming with PA Addresses
announcing more specific prefix from two different ASN

80.1/16

80.1/16

80.1.0/24
195.8/16

195.8/16

80.1.0/24

80.1.0/24

LIR2
AS2

LIR3
AS3

= route announcement
Not a recommendation / BCP!

AS4208AS4204AS4200

AS4000

AS2000

AS3000

Customer2
Customer3 Customer4 Customer5

LIR1 LIR2

10.4.200.0/22 10.4.208.0/22

10.4.204.0/22

10.4.192.0/19

10.20.0.0/24

Case 4: Usage of as-set objects

10.187.65.0/24

4

Case 4: Multiple Customers, Same Policy

Use as-set objects to group aut-nums
as-set: name, starting with AS-; can be hierarchical,
using ':'
members: ASNs, or as-sets
mbrs-by-ref: <mntner-name>

Refine the aut-num to use as-set
In the from and to statements

Special expression: PeerAS
in the import statement
loops through the list from as-set

14

Case 4: as-set object example

as-set: AS4000:AS-CUSTOMERS
descr: AS4000 Customers
members: AS4200,AS4204,AS4208
tech-c: BM110-RRTEST
admin-c: BM110-RRTEST
notify: bert@example.net
mnt-by: LIR2-MNT
changed: bert@example.net 20021001
source: RRTEST

Case 4: aut-num object example

aut-num: AS4000
import: from AS2000
 accept AS2000
import: from AS4000:AS-CUSTOMERS
 accept PeerAS
import: from AS3000
 accept AS3000 AS2000
export: to AS2000
 announce AS4000
export: to AS4000:AS-CUSTOMERS
 announce ANY
export: to AS4000:AS-PEERS
 announce AS4000 AS2000 AS4000:AS-CUSTOMERS

Case 4: Adding a New Peer / Customer

Automating the process:
Obtain and register an AS
Create route objects for the new AS
Add the new AS to (one of) your as-set object(s)
Modify your scripts/programs e.g.

add a {IP-address,AS-num,Description}-tuple to
a master RtConfig file
use Make to rebuild RtConfig file(s)

15

AS4208AS4204AS4200

AS4003

AS2000

AS3001

LIR1 LIR2 10.4.192.0/19
10.3.0.0/20

Case 5: Peering Setup

Stub network
(AS1000)

5
5

10.4.200.0/22 10.4.208.0/22

10.4.204.0/22
10.20.0.0/24

10.187.65.0/24

10.3.1.0/24

Case 5.0: BGP with peers - AS4003 view

Peering policy between peers does not need to
be exactly the same:

E.g. AS4003 is announcing AS2000 to AS3001, but he is
not accepting it!

aut-num: AS4003

import: from AS3001

 accept AS3001 AS2000

export: to AS4003:AS-PEERS

 announce AS4003 AS2000 AS4003:AS-CUSTOMERS

[...]

aut-num: AS3001

import: from AS4003

 accept <^AS4003+AS4003:AS-CUSTOMERS*$>
export: to AS4003
 announce AS3001 AS2000

Case 5.0: RtConfig Output
(import in the notes)

no access-list 101
access-list 101 permit ip 10.4.200.0 0.0.4.0 255.255.252.0 0.0.0.0
access-list 101 permit ip 10.4.208.0 0.0.0.0 255.255.252.0 0.0.0.0
access-list 101 permit ip 10.20.0.0 0.0.0.0 255.255.255.0 0.0.0.0
access-list 101 permit ip 10.187.65.0 0.0.0.0 255.255.255.0 0.0.0.0
access-list 101 deny ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!
no route-map AS3001-EXPORT
!
route-map AS3001-EXPORT permit 1
 match ip address 101
!
router bgp 4003
neighbor 10.3.15.4 route-map AS3001-EXPORT out

16

Case 5.0: -cisco_no_compress_acls

Instead of:

access-list 101 permit ip 10.4.200.0 0.0.4.0 255.255.252.0 0.0.0.0

We'll have:

access-list 101 permit ip 10.4.200.0 0.0.0.0 255.255.252.0 0.0.0.0
access-list 101 permit ip 10.4.204.0 0.0.0.0 255.255.252.0 0.0.0.0

Case 5.0: -cisco_use_prefix_lists
(import in the notes)

no ip prefix-list pl101
ip prefix-list pl101 permit 10.4.200.0/21 ge 22 le 22
ip prefix-list pl101 permit 10.4.208.0/22
ip prefix-list pl101 permit 10.20.0.0/24
ip prefix-list pl101 permit 10.187.65.0/24
ip prefix-list pl101 deny 0.0.0.0/0 le 32
!
no route-map AS3001-EXPORT
!
route-map AS3001-EXPORT permit 1
 match ip address prefix-list pl101
!
router bgp 4003
neighbor 10.3.15.4 route-map AS3001-EXPORT out

Case 5.1: BGP with peers - AS3001 view

This example uses AS Path Filters
the <filter> is expressed using regular expression

It also shows asymmetric policy
(AS3001 does not listen to the routes from AS2000
announced back to them by AS4003)

aut-num: AS3001
import: from AS4003
 accept <^AS4003+AS4003:AS-customers*$>
export: to AS4003
 announce AS3001 AS2000
[…]

17

@RtConfig set cisco_map_name = "AS%d-IMPORT"
@RtConfig import AS3001 10.3.15.4 AS4003 10.4.192.3
!
no ip as-path access-list 1
ip as-path access-list 1 permit

^(_4003)+(_(4200|4204|4208))*$

!
no route-map AS4003-IMPORT

!
route-map AS4003-IMPORT permit 1
 match as-path 1

!
router bgp 3001

neighbor 10.4.192.3 route-map AS4003-IMPORT in

Case 5.1: RtConfig Output
(export in the notes)

Case 5: Exercise

How can AS2000 achieve full multihoming / load
sharing with two of his upstreams?

Both AS3000 & AS4000 should listen to each other’s
announcements of their multihomed customer, but
give less preference to the indirect route;
This can (maybe) be achieved using “pref”?!
Task: create AS3002 & AS4002 to reflect this!

Time: 5 mins

AS4202AS4201AS4200

AS4007

Stub network
AS2030

AS3007

AS5000 AS7034

Customer1 Customer2 Customer3 Customer4Customer5

LIR1 LIR2

Upstream US

Upstream EU

Case 6: Towards the upstream(s)

AS2031

AS2032

18

Case 6: Using Communities - AS3007

3007:20 - multihomed customers, preferred route
3007:30 - multihomed customers, backup route

(pref=30, localpref=70) (etc)

3007:440 - only local traffic
Community set to no export

3007:112 - prepend 2 times to peers
3007:222 - prepend 2 times to US upstreams
3007:332 - prepend 2 times to EU upstreams
The same community definitions for AS4007!

Case 6: Relevant parts of AS3007
Multihomed customers, backup route
match community 3007:30, pref=30, localpref=970
import: from AS3007:AS-BGP-CUSTOMERS
 action pref=30 ;
 accept community.contains (3007:30)
 AND AS3007:AS-BGP-CUSTOMERS;
Announce only to customers (not to peers)
import: from AS3007:AS-BGP-CUSTOMERS
 action
 community = {no_export};
 accept community.contains (3007:440)
 AND AS3007:AS-BGP-CUSTOMERS;
import: from AS3007:AS-PEERS
 action pref=40 ;
 accept <^PeerAS$>
import: from AS3007:AS-PEERS
 action pref=50;
 accept <^PeerAS+PeerAS:AS-customers$>

Case 6: Relevant outputs: for upstreams
no access-list 101
access-list 101 permit ip 10.20.0.0 0.0.0.0 255.255.255.0 0.0.0.0
access-list 101 permit ip 10.187.65.0 0.0.0.0 255.255.255.0 0.0.0.0
access-list 101 deny ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
!
ip bgp-community new-format
!
no ip community-list 1
ip community-list 1 permit 3007:222
!
route-map AS5000-EXPORT permit 1
 match community 1
 match ip address 101
 set as-path prepend 3007 3007

19

Case 6: Relevant outputs: for peers
no ip as-path access-list 1
ip as-path access-list 1 permit ^_4000$
!
no route-map AS4000-IMPORT
!
route-map AS4000-IMPORT permit 1
 match as-path 1
 set local-preference 60
!
no ip as-path access-list 2
ip as-path access-list 2 permit ^(_4000)+_(4200|4204|4208)$
!
route-map AS4000-IMPORT permit 2
 match as-path 2
 set local-preference 50
!
router bgp 3007
neighbor 10.4.192.3 route-map AS4000-IMPORT in

Case 6: Relevant outputs: for customers

no ip community-list 4
ip community-list 4 permit 3007:20
!
no route-map AS2000-IMPORT
!
route-map AS2000-IMPORT permit 1
 match community 4
 match ip address 101
 set local-preference 80
!
no ip community-list 5
ip community-list 5 permit 3007:30
!
route-map AS2000-IMPORT permit 2
 match community 5
 match ip address 101
 set local-preference 70

Case 6: Controlling traffic using communities
and “pref” value

AS2030: all traffic from AS3007, AS4007 backup
only
AS2031: load sharing

Provider & it’s customers through their link
US traffic through AS3007, EU from the AS4007

AS2032: AS4007 only for “local” traffic

Note: there is an implicit logical OR when combining filter
rules in aut-num!

Therefore an explicit AND has to be used!

20

Case 6: Exercises / Questions?

Look into the AS4007 & the config files
(case 6.4)

Look into the different customer setups
AS2030, 2031, 2032…

Use prefix-lists instead
-cisco_use_prefix_lists

Create your own AS60xy
XY is your number on the attendees list
Choose your policy to AS3007 & AS4007
Create RtConfig input file
Analyse the resulting output

Time: 15 minutes

Usage: Potential Practical Problems

Policy can easily get very complex and result in even
more complex router configuration

Line limit on cisco AS path filters
need to be careful when using as-sets

Nervous about configuring routers from public data?
Compare this with anti-virus SW updates!

Usage: Preliminary Work (summary)

Either in the RIPE RR
Or in your own routing registry database

Tasks for your own AS:
Create person and maintainer objects

Set up PGP authentication
Create aut-num objects for each AS
Identify IP prefixes associated with each AS

Create route objects in the database
Create as-set objects where policy is common

21

Usage: How to Set-up Your Own RR

Download server SW
Choose: RIPE DB SW or IRRd

Install and set-up server SW
Register your RR with the IRR (see notes)
Get the mirroring agreement with the RIPE DB
Give your customers access to your RR

Read-only?
With privileges to update objects?

The rest of the IRRToolSet

peval
prtraceroute
aoe
prpath
CIDRAdvisor
roe

IRRToolSet: Intro

Started as RAToolSet

Now maintained by RIPE NCC:
http://www.ripe.net/ripencc/db/irrtoolset/
Mailing list: <irrtoolset@ripe.net>
Contact: <ripe-dbm@ripe.net>

Download: ftp://ftp.ripe.net/tools/IRRToolSet/

Installation needs: lex, yacc and C++ compiler

22

IRRToolSet: peval

Lightweight policy evaluation tool
Transforms policy expressions in the matching set of
routes (e.g. expands AS numbers)

may require connection to RR server
Handy to compose and check your RPSL filter
before putting it into RR server

Can be used to write router configuration generators
Web interface:

http://www.ripe.net/cgi-bin/peval.cgi

IRRToolSet: prtraceroute

Prints the route packets take - including policy
information (as registered in RR)

Requires root privileges and access to RR

Used as diagnostics tool
Reports in 3 parts:

[ASN] inaddr-name (IP) time
Traversed ASNs
If the hop was within AS, external, preferred or backup

IRRToolSet: aoe

Displays the aut-num object for the specified AS
GUI (C++/Tcl/Tk)

Given a BGP dump from a router inside the AS
aoe parses the AS_PATH attributes
determines the peer ASes

by taking the first AS number in the AS_PATH

takes the import policies for each peer AS
 by taking the last AS number in the AS_PATHs that start
with the peer's AS number

23

IRRToolSet: aoe (screen dump)

IRRToolSet: The Rest

prpath enumerates possible paths between two AS-
s, as registered in RR
CIDRAdvisor suggests safe aggregates per AS

Practical usage: http://www.cidr-report.org/

rpslcheck syntax checks objects for IRR
But the RIPE DB rules are slightly different

roe GUI, lists the routes & dependencies, can add /
delete specified routes

IRRToolSet: roe, Screendump

24

IRRToolSet: Conclusions

The quality of data provided by tools strongly depends
on the data you have in the RR!

Crucial to maintain RR objects up-to-date
Tools can work with both RIPE and IRRd based RR's
Using the tools will help you to 100% benefit from
registering your data in RR, to achieve:

automating access-list generation
avoiding mistakes
improving configuration/operation process

IRRToolSet: Practical Exercise

Task: Use one of the IRRTools (15 minutes)
on the web or command-line
http://www.ripe.net/ripencc/pub-
services/db/irrtoolset/index.html

Have you used the IRRTools before?
What are their most useful features?
Which new features would you like to see?
Can you suggest any improvements? Bug reports?
Do you know of any similar tools/projects/analysis?

Extra: Course/Workshop Server Setup

RedHat 8 Linux Server , running :
zebra (for BGP)
whoisd (RIPE NCC whois server, latest version
(3.1.1))
Ssh
whois client

25

Extra: RtConfig

Version 4.0 supports RPSL (Latest version is
4.7.3 as at 13 February 2003)

Generates Cisco, Bay's BCC, Juniper's
Junos and Gated/RSd configurations

Creates route and AS path filters.

Can also create ingress/egress filters (Cisco
only)

Extra: RtConfig options

-help
-version
-s <source-list>
-f <file name>
-config <config-format>
-supress-martian
-T [whois_query | whois_response | input | all]

Extra: Initialise Cisco list parameters

$ RtConfig -cisco_use_prefix_lists

>RTConfig

@RtConfig set cisco_map_first_no = 10
@RtConfig set cisco_map_increment_by = 10
@RtConfig set cisco_prefix_acl_no = 130
@RtConfig set cisco_aspath_acl_no = 130
@RtConfig set cisco_pktfilter_acl_no = 130
@RtConfig set cisco_community_acl_no = 30
@RtConfig set cisco_max_preference = 100

26

Extra: Cisco: Martians filter access list

$ RtConfig-cisco_use_prefix_lists -supress_martian
RtConfig> @RtConfig access_list filter AS4000
!
no ip prefix-list pl100
ip prefix-list pl100 deny 0.0.0.0/0 ge 32
ip prefix-list pl100 deny 127.0.0.0/8 le 32
ip prefix-list pl100 deny 10.0.0.0/8 le 32
ip prefix-list pl100 deny 172.16.0.0/12 le 32
ip prefix-list pl100 deny 192.168.0.0/16 le 32
ip prefix-list pl100 deny 192.0.2.0/24 le 32
ip prefix-list pl100 deny 128.0.0.0/16 le 32
ip prefix-list pl100 deny 191.255.0.0/16 le 32
ip prefix-list pl100 deny 192.0.0.0/24 le 32
ip prefix-list pl100 deny 223.255.255.0/24 le 32
ip prefix-list pl100 deny 224.0.0.0/3 le 32
ip prefix-list pl100 deny 169.254.0.0/16 le 32
ip prefix-list pl100 permit 10.4.192.0/19
ip prefix-list pl100 deny 0.0.0.0/0 le 32

Extra: Juniper: access list

$ RtConfig –protocol ripe -config junos
RtConfig> @RtConfig access_list filter AS4000

 policy-statement prefix-list-100 {
 term prefixes {
 from {
 route-filter 10.4.192.0/19 exact accept;
 }
 }
 term catch-rest {
 then reject;
 }
 }

Extra: Mailing Lists

<db-wg@ripe.net>
RIPE network management database

<irrtoolset@ripe.net>
Internet Routing Registry ToolSet project

<rpslng@ripe.net>
extensions to RPSL related to IPv6 and multicast

27

Wellington Internet Exchange

Distributed exchange running over Citylink

over 60 Km of fibre in city centre

approx 100 participants

extensive use of Linux routers with Zebra

many small players with no BGP clue

larger players wary because of lack of clue

route reflectors need to implement policies to

“make it safe”

WIX network (part of)

AS64517

AS9439

AS7657AS4770AS681

AS9439

AS64551AS64526

Preliminary work

Because we have lots of Private AS numbers we
have to run our own routing registry database

 We chose irrd because our requirements are
modest

Create maintainer and person objects
Set up PGP authentication
Create aut-num objects for each AS
Identify IP prefixes associated with each AS

Create route objects in database
Create as-set objects where policy is common

28

AS9439 has a relatively simple set of routing
requirements

BGP peering with peers
Number of private AS = 73
Number of public AS = 25
AS9439 has no prefixes of its own!

Use RPSL and RtConfig

AS9439 Configuration

aut-num: AS9439
as-name: WIX-AS9439
descr: WIX Master AS
import: from AS9439:AS-PRIVATE
 accept PeerAS
import: from AS9439:AS-PUBLIC
 accept PeerAS
export: to AS9439:AS-PRIVATE
 announce AS9439:AS-PRIVATE

AS9439:AS-PUBLIC
export: to AS9439:AS-PUBLIC
 announce AS9439:AS-PRIVATE

AS9439:AS-PUBLIC

AS9439 policies

AS9439:AS-PUBLIC

as-set: AS9439:AS-PUBLIC
descr: Public Ases for WIX
members: AS681, AS10022, AS17412, AS17792,

AS18119, AS4740, AS4768, AS4770, AS7657,
AS9325, AS9338, AS9436, AS9495, AS9503, AS9736,
AS9790, AS9872, AS9887

tech-c: AL325-WIX
notify: rpsl@lpnz.org
mnt-by: MAINT-WIX-NZ
changed: asjl@lpnz.org 20020612
source: WIX

29

AS9439:AS-PRIVATE

as-set: AS9439:AS-PRIVATE
descr: Private ASes for WIX
members: AS64512, AS64517, AS64525, AS64530,

AS64537, AS64543, AS64548, AS64553, AS64513,
AS64518, AS64526, AS64532, AS64538, AS64544,
AS64549, AS65025, AS64514, AS64520, AS64527,
AS64534, AS64539, AS64545, AS64550, AS65498,
AS64515, AS64521, AS64528, AS64535, AS64540,
AS64546, AS64551, AS65518, AS64516, AS64523,
AS64529, AS64536, AS64541, AS64547, AS64552,
AS65531

tech-c: AL325-WIX
source: WIX

AS64512 policies

aut-num: AS64512
as-name: WIX-AS64512
descr: Citylink
admin-c: AL325-WIX
tech-c: AL325-WIX
import: from AS9439
 accept ANY
export: to AS9439
 announce AS64512
notify: rpsl@lpnz.org
mnt-by: MAINT-WIX-NZ
changed: asjl@lpnz.org 20020610
source: WIX

AS64512 prefixes

AS64512 has these prefixes:

 210.86.11.236/30 210.48.103.144/28 210.48.103.136/29
210.48.103.0/28 203.97.231.224/28 203.96.131.96/29
203.79.85.80/29 203.109.154.32/28 203.109.148.24/29

Note small address blocks that wouldn't normally be seen at
an Internet Exchange

This is not unusual on the WIX!

30

Software Tools (1)

Cisco output from RtConfig almost works with
Zebra

Use cisco2zebra filter to massage the output
It's a hack. The solution is to fix RtConfig

Use mk-cisco to generate input for RtConfig
processing

Input to mk-cisco looks like:

202.7.0.1:64512:Citylink
202.7.0.5:64546:Puskas
202.7.0.12:64526:CitylinkVoIP

Makefile

#
$Id: Makefile,v 1.8 2002/07/05 04:44:41 asjl Exp $
#
IRR_HOST=cheviot.lpnz.org
IRR_PORT=43
IRR_SOURCES=WIX

Zico.cfg: Zico.master mk-cisco Makefile
 /home/asjl/NZNOG/mk-cisco < Zico.master > Zico.rpsl
 RtConfig -h $(IRR_HOST) -p $(IRR_PORT) \

 -s $(IRR_SOURCES) \
 -cisco_use_prefix_lists < Zico.rpsl \
 | /home/asjl/NZNOG/cisco2zebra > Zico.cfg

Software Tools (2)

Tools hide complexity:

$ wc -l Zico.master Zico.rpsl Zico.cfg
 62 Zico.master
 755 Zico.rpsl
 3442 Zico.cfg

Can use mk-junos to build Juniper configs if
Juniper donate a router!

$ wc -l Zico.cfg-j
 5410 Zico.cfg-j

31

Software Tools (3)

BGP naïve customers get a sample BGP
configuration

Generated using mk-clients tool

Adding a new peer

Register an AS in the WIX database
Add routes for the new AS
Add the new AS to AS9439:AS-PUBLIC or
AS9439:AS-PRIVATE
Add a {IP-address,AS-num,Description}-tuple to
master config file
Use Make to rebuild config file(s)

What Next?

Run your own routing registry?
Decide which software to run

IRRd or RIPE v3
Or register your routes in a public registry such
as APNIC?
Or both?

You may not want to reveal all your internal
secrets!

32

What Next? (cont)

Look at your customers, peers, providers and
decide how to represent policy in RPSL

Implement router configuration using RPSL
and associated tools!

References

Using RPSL in Practice - RFC 2650
RPSL - RFC 2622

http://www.rfc-editor.org/rfcsearch.html
IRRToolSet

http://www.ripe.net/ripencc/pub-
services/db/irrtoolset/

RPSL Training Page
http://www.isi.edu/ra/rps/training/

RIPE database manual
http://www.ripe.net/ripe/docs/databaseref-
manual.html

References (cont)

RADB
http://www.merit.edu/radb/

RIPE database software
ftp://ftp.ripe.net/ripe/dbase/software

IRRd software
http://www.irrd.net/

Zebra
http://www.zebra.org

33

Acknowledgements

Mark Prior <mrp@iagu.net>
Ambrose Magee
<ambrose.magee@ericsson.com>
Simon Blake <simon@katipo.co.nz>
APNIC

for asking me to present the tutorial

Contact Details

$ whois -h whois.apnic.net Andy Linton
person: Andy Linton
address: 149 Cecil Road
address: Wilton
address: Wellington
country: NZ
phone: +64 4 970 1764
e-mail: asjl@lpnz.org
nic-hdl: AL325-AP
mnt-by: MAINT-AU-AL325-AP
changed: asjl@lpnz.org 20021119
source: APNIC

